Металлы 7 группы. Строение атомов. Проявляемые степени окисления и их устойчивость. Оксиды и гидроксиды металлов в высших степенях окисления. Сравнение с элементами 17 группы.
Mn, Tc, Re (Bh) (n-1)d^6 ns^2
1. Устойчивые степени окисления у Mn +2, +4, +6, +7, у Tc (+4), +7, у Re (+4), +7. Атомный радиус возрастает, но у Tc и Re почти одинаковый(следствие лантаноидного сжатия). Для Mn наиболее типичны координационные числа 6 и 4, для Tc и Re кроме того еще 7 и 8. С ростом степени окисления возрастает тенденция к образованию анионных комплексов, а катионных падает.
2. Простые вещества – серебристо-белые металлы. Температуры кипения и плавления растут. Химическая активность понижается (в ряду напряжения Mn до водорода, а Tc, Re – после). Мелкодисперсный Mn реагирует с водой: Mn + 2H2O = Mn(OH)2 + H2
3. Взаимодействие с кислотами
HCl, H2SO4(р): Mn + 2HCl = MnCl2 + H2
HNO3, H2SO4(к) пассивируют Mn.
У Tc, Rе электродные потенциалы перехода в M^2+, в отличие от марганца, больше нуля, поэтому: 3Tc + 7HNO3(р) = 3HTcO4 + 7NO + 2H2O; 2Re + 7HNO3(k) = 2HReO4 + 7NO2
4. Взаимодействие с щелочами – не реагируют
5. Соединения со +7
Устойчивость соединений от Mn к Re повышается. Оксид Mn2O7 взрывоопасен: 2Mn2O7 = 4MnO2 + 3O2. Tc2O7, Re2O7 – устойчивые кристаллич. Вещества. В водных растворах HMO4 – сильные кислоты (марганцевая, технециевая, рениевая), в ряду сила кислот уменьшается. Соли этих кислот называют перманганатами, пертехнатами и перренатами.
39. Марганец. Строение атома и проявляемые степени окисления (примеры соединений). Оксиды и гидроксиды, их кислотно-основные и окислительно-восстановительные свойства. Комплексы марганца (2).
3d^5 4s^2
1. Устойчивые степени окисления: +2, +4, +7, также существуют соединения и с другими со. Типичное координационное число – 6 и 4. С ростом степени окисления возрастает тенденция к образованию анионных комплексов, а катионных падает (усиливается кислотный характер бинарных соединений). Для химии марганца очень характерны окислительно-восстановительные реакции. Кислая среда способствует образованию Mn(II), щелочная – (6), а нейтральная (4) – чаще всего MnO2.
2. Mn(мелкодисперсный) + 2H2O = Mn(OH)2 + H2; Mn также реагирует с выделением Н2 с HCl и разб. H2SO4. Концентр. H2SO4 и HNO3 пассивируют Mn.
3. Соединения со +7
Mn2O7 – неустойчивый взрывоопасный, HMnO4 – марганцевая кислота, также очень неустойчива. Большинство ее солей, перманганатов, растворимы в воде. Соединения марганца (7) – сильные окислители. В зависимости от среди ион MnO4^- изменяется так: кислая срела: MnO4^- + 8H^+ + 5e = Mn^2+ + 4H2O нейтральная и щелочная среда: MnO4^- + 2H2O + 3e = MnO2 + 4OH^0; сильнощелочная среда: MnO4^- + e = MnO4^2-; при нагревании перманганаты обычно разлагаются: 2KMnO4 = K2MnO4 = MnO2 = O2
4. Соединения со +6
Соли H2MnO4 – манганаты, существуют в растворах лишь при большом избытке щелочи, в противном случае – диспропорционируют: 3K2MnO4 + H2O = 2KMnO4 + MnO2 + 4KOH, соединения Mn(6) – сильные окислители особенно в кислой среде: MnO4^2- + 4H^+ + 2e = MnO2 + 2H2O
5. Соединения со +4
MnO2 – наиболее устойчивое соединение марганца. Оно не растворяется в воде, кислотах, щелочах, но по химической природе – амфотерен. Марганец(4) проявляет как окислительные, так и восстановительные свойства: MnO2 + 4HCl = Cl2 + MnCl2 + 2H2O; MnO2 + Na2O2 = Na2MnO4
6. Соединения со +2
MnO и Mn(OH)2 – проявляют в основном основные свойства. При действии окислителей проявляют восстановительные свойства: Mn(OH)2 + O2 = MnO2 + H2O, сильные окислители (PbO2 в кислой среде) способны перевести Mn (II) в Mn(VII). Координационное число равно 6. Для Mn(II) характерны катионные комплексы, однако при взаимодействии с призводными щелочных металлов образуются анионные: 4KF + MnF2 = K4[MnF6]. Катионные комплексы имеют вид: [MnCl(OH)5]^+. Манганаты часто образуют кристаллогидраты.
40. Марганцевая кислота и ее соли. Окислительные свойства перманганата калия в зависимости от pH среды (примеры).
HMnO4 – марганцевая кислота, очень неустойчива, в водном растворе сильная кислота. Большинство ее солей, перманганатов, растворимы в воде, ион MnO4^- - красно-фиолетового цвета. Соединения марганца (7) – сильные окислители. Например при соприкосновении с Mn2O7 эфир и спирт воспламеняются. В зависимости от среди ион MnO4^- изменяется так: кислая срела: MnO4^- + 8H^+ + 5e = Mn^2+ + 4H2O нейтральная и щелочная среда: MnO4^- + 2H2O + 3e = MnO2 + 4OH^0; сильнощелочная среда: MnO4^- + e = MnO4^2-; при нагревании перманганаты обычно разлагаются: 2KMnO4 = K2MnO4 = MnO2 = O2
Fe, Co, Ni. Строение атомов. Проявляемые степени окисления и их устойчивость. Химическая активность металлов. Оксиды и гидроксиды металлов в различных степенях окисления, их кислотно-основные и окислительно-восстановительные свойства.
Fe 3d^6 4s^2; Co 3d^7 4s^2; Ni 3d^8 43^2
1. Устойчивые степени окисления: Fe – (+2), +3, (+6); Co +2,(+3); Ni +2. Радиус атома в ряду уменьшается. Сравнивая электродные потенциалы перехода из со +3 в со +2 у Fe (0,72) и Co (1,92) делаем вывод, что Fe(III) более устойчив, чем Fe(II). Co(III) – сильный окислитель.
2. Взаимодействие с кислотами
HCl, H2SO4 (разб): (все 3 металла) M + 2H^+ = M^2+ + H2
HNO3 (разб 30%): Fe + 4HNO3 = Fe(NO3)3 + NO + 2H2O; 3Co(Ni) + 8HNO3 = 3Co(Ni)(NO3)2 + 2NO + 4H2O
HNO3(k), H2SO4(k): на холоде пассивируются, при нагревании: Fe + 6HNO3 = Fe(NO3)3 + 3NO2 + 3H2O; Co(Ni) + 4HNO3 = Co(Ni)(NO3)2 + 3NO2 + 2H2O
3. Взаимодействие с щелочами – не реагируют
4. Коррозия железа: 4Fe + 6H2O + 3O2 = 4Fe(OH)3; Fe^3+ + 3e = Fe (E = -0,12); Cu^2+ + 2e = Cu (E = 0,31) Cu – окислитель, поэтому он усиливает коррозию, Zn^2+ + 2e = Zn (E = 0,76) Zn – восстановитель, поэтому он ослабляет коррозию.
5. Железо – металл средней химической активности (во влажном воздухе легко окисляется). Кобальт несколько уступает железу (устойчив в обычных условиях, с O2 реагирует при 300 градусах цельсия). Никель еще менее активен (реакция с О2 при 500 градусах).
6. Соединения со +2.
Оксиды ЭО – тугоплавкие, не растворимы в воде и щелочах, но реагируют с кислотами проявляя основные свойства: ЭО + 2Н^+ = Э^2+ + H2
Гидроксиды Э(ОН)2 получают: M^2+ + 2OH^- = M(OH)2 это не очень слабые электролиты, их соли слабо гидролизуются, они проявляют основные ствойства в рекциях нейтрализации с кислотами. Восстановительная способность от железа к никелю уменьшается: Fe(OH)2(белый) + O2 (воздуха) = Fe(OH)3 (бурый); Co(OH)2 (розовый) + H2O2 = Co(OH)3 (бурый); Ni(OH)2 (зеленый) + Br2 + OH^- = Ni(OH)3 (черный).
Соединения со +3.
Fe(OH)3. Основные свойства: Fe(OH)3 + 3H^+ = Fe^3+ + 3H2O; кислотные свойства: Fe(OH)3 + xOH^- = [Fe(OH)3+x]^-x+3 (условия: нагревание, концентрир. Щелочь) в нейтральных растворах соли железа (3) гидролизуются в заметной степени (окраска становится желто-коричневой) соединения Fe(III) проявляют окислительные свойства.