ЯМР-спектроскопия, ЭПР-спектроскопия
Ядерный магнитный резонанс (ЯМР) внастоящее времяявляется широко используемым методом для изучения структуры биополимеров, о взаимодействиях между молекулами и о молекулярном движении. Рассмотрим теоретические основы этого метода на примере ЯМР для ядер атомов водорода 1Н.
Кроме заряда и массы, протон обладает механическим угловым моментом или спином I. Вращение заряженной частицы порождает магнитное поле; этот заряд можно представить как точечный магнит, ориентированный вдоль оси вращения. Напряженность этого магнитного поля выражается как магнитный момент µя. Подобно стержневому магниту, имеющему северный и южный полюс, µя имеет направление. Протоны схематически можно представить в виде микроскопических магнитных стрелок. При отсутствии внешнего магнитного поля протоны имеют хаотическое распределение. При наложении внешнего магнитного поля с напряженностью Н0 возникает взаимодействие между магнитным моментом протона µя и Н0. Энергия этого взаимодействия равна:
Е = gя bя Н0
гдеgя - ядерный g - фактор bя – ядерный магнетон
Для протона ядерное спиновое квантовое число Iсоставляет +½ или – -½. Во внешнем магнитном поле Н0 возможны две ориентации протонов: магнитные стрелки ориентируются по полю (параллельно линиям магнитного поля) с энергией E1 = - 1/2gя bя H0 ,
или против поля (антипараллельно линиям магнитного поля ) с энергией E2 = + 1/2gя bя H0 ,
Разность энергий между уровнями равна
DЕ = Е2 - E1 = gя bя H0 ,
Между энергетическими уровнями ядер Е2 и E1 возможны переходы. При поглощении энергии электромагнитного излучения в области радиочастот ядрами происходит переход с одного уровня на другой. При наложении на систему ядер с различной ориентацией переменного магнитного поля (перпендикулярно постоянному магнитному полю Н0) происходит поглощение энергии волны определенной частоты v0.
v0 = gя bя H0/h , гдеh – постоянная Планка.
Поглощение энергии переменного магнитного поля ядрами атомов называют ядерным магнитным резонансом. Поглощенная энергия тратится на изменение ориентации ядер, т.е изменение спина ядра. Для измерения ЯМР используются ЯМР-спектрометры (Рис. 9). Этот прибор состоит из мощного электромагнита, который создает постоянное магнитное поле H0. Между полюсами магнита которого поле H1 с частотой до 108 Гц , натравленное перпендикулярно H0. Для достижения резонанса изменяют частоту переменного магнитного поля. При определенной частоте магнитные моменты ядер меняют ориентацию, происходит резонансное поглощение энергии переменного магнитного поля. Резкое изменение магнитного поля фиксируется детектором (катушка, в которой индуцируется электрический ток).
Любое ядро, например, протон, в магнитном поле может совершить только один переход. Спин протона может составлять или +1/2, или – 1/2 . Соответственно, спектр магнитного резонанса ядра должен состоять только из одной резонансной линии. Однако это не так, потому что ядра окружены электронами, и наложенное магнитное поле индуцирует также циркуляцию и этих электронов. Движущиеся электроны сами создают магнитное поле, которое также оказывает влияние на ориентацию ядра. Таким образом, наблюдаемая резонансная частота ядер определенных атомов зависит от их окружения, т.е. от структуры молекулы. Ценность ЯМР-спектроскопии обусловлена именно этим эффектом окружения, так как в молекуле резонансная частота определенного ядра одного и того же химического элемента будет зависеть от химической группы, к которой принадлежит ядро. Например, резонансная частота протонов метильной группы будет отличаться от частоты протонов аминогруппы. Более того, частота протонов метильной группы толуола будет отличаться от частоты метильной группы уксусной кислоты. Такое смещение резонансной частоты, обусловленное химическим окружением, называется химическим сдвигом.
Для измерения химических сдвигов в кювету с исследуемым веществом вводят эталонное вещество – стандарт. В качестве стандарта часто используют тетраметилсилан (СНз)4Si. Это вещество имеет 12 эквивалентных протонов, которые дают одну резонансную линию. Этой резонансной линии приписывают произвольную величину Н0 или v0 и выражают химический сдвиг как смещение от этой величины. Величину смещения от эталона выражают в виде безразмерных единиц - миллионных доля (м. д .).
м. д. = (Нобр - Нэт ) 106/ Н0
где Нобр и Нэт –резонансная напряженность магнитного поля для образца и стандарта, соответственно.
Преимущество такой безразмерной шкалы состоит в том, что химические сдвиги не зависят от действительной величины Н0 или от частоты переменного радиомагнитного поля и поэтому можно сравнивать спектры, полученные на разных ЯМР-спектрометрах. На рис. 9 представлен протонный спектр аминокислоты лизина, на котором видно несколько резонансных линий протонов, и влияние химической группы на ЯМР-сигнал.
Рис. 9. Блок-схема ЯМР-спектрометра:
1–образец; 2–магнит постоянного поля: 3–генератор переменного поля; 4 - генератор электромагнитного поля; 5 – катушка для передачи электромагнитного поля с частотой v; б–приемная катушка; 7–система регистрации сигнала ЯМР
ЯМР-томография. Вода в большом количестве входит в состав большинства биологических объектов. Основным ЯМР- сигналом биологических структур является сигнал протонного магнитного резонанса молекул воды. Интенсивность сигнала на данной частоте будет характеризовать относительное количество воды в ткани, которая находится в области определенного значения магнитного поля. Создавая в биологическом объекте градиент магнитного поля, можно получить спектр ЯМР протонов молекул воды. Профиль этого спектра будет определяться относительным содержанием молекул воды в той или иной части объекта. При помощи ЯМР-томографа биологический объект просвечивают во всех направлениях в магнитном поле. Затем с помощью компьютерного анализа воссоздают изображения по полученным проекциям.
Рис. 10. ЯМР-спектр лизина, растворенного в тяжелой воде. (Фрайфельдер, с.486)
А) структурная формула лизина
Б) Спектр ЯМР молекулы лизина.
1,2,3,4,5 – номера атомов углерода, у которых находятся протоны, дающие данную группу линий
t - химический сдвиг в м.д.
Таким образом, ЯМР-томография обеспечивает возможность изучения различных частей биологического объекта на основе различий амплитуды сигнала ЯМР в разных частях образца.
Таким методом определяются размер и положение областей в организме, различающихся по содержанию воды. Например, можно определить размер и положение внутренних органов, инородных тел, попавших в организм. Этот метод с успехом используются для определения размеров и локализации опухолей в организме человека. ЯМР-томография имеет большое преимущество перед рентгеновской томографией, так как радиочастотное электромагнитное облучение не вызывает повреждений биологического объекта.