Закон Мозли. Роль закона Мозли. Современная формулировка Периодического закона.

Закон Мозли —закон, связывающий частоту спектральных линий характеристического рентгеновского излучения атома химического элемента с его порядковым номером.

Согласно Закону Мозли, корень квадратный из частоты Закон Мозли. Роль закона Мозли. Современная формулировка Периодического закона. - student2.ru спектральной линии характеристического излучения элемента есть линейная функция его порядкового номера Закон Мозли. Роль закона Мозли. Современная формулировка Периодического закона. - student2.ru : Закон Мозли. Роль закона Мозли. Современная формулировка Периодического закона. - student2.ru

где Закон Мозли. Роль закона Мозли. Современная формулировка Периодического закона. - student2.ru — постоянная Ридберга, Закон Мозли. Роль закона Мозли. Современная формулировка Периодического закона. - student2.ru — постоянная экранирования, Закон Мозли. Роль закона Мозли. Современная формулировка Периодического закона. - student2.ru — главное квантовое число. На диаграмме Мозли зависимость от Закон Мозли. Роль закона Мозли. Современная формулировка Периодического закона. - student2.ru представляет собой ряд прямых (К-, L-, М- и т. д. серии, соответствующие значениям n = 1, 2, 3,...).

Закон Мозли явился неопровержимым доказательством правильности размещения элементов в периодической системе элементов Д. И. Менделеева и содействовал выяснению физического смысла Закон Мозли. Роль закона Мозли. Современная формулировка Периодического закона. - student2.ru .

В соответствии с Законом Мозли, рентгеновские характеристические спектры не обнаруживают периодических закономерностей, присущих оптическим спектрам. Это указывает на то, что проявляющиеся в характеристических рентгеновских спектрах внутренние электронные оболочки атомов всех элементов имеют аналогичное строение.

Более поздние эксперименты выявили некоторые отклонения от линейной зависимости для переходных групп элементов, связанные с изменением порядка заполнения внешних электронных оболочек, а также для тяжёлых атомов, появляющиеся в результате релятивистских эффектов (условно объясняемых тем, что скорости внутренних электронов сравнимы со скоростью света).

В зависимости от ряда факторов — от числа нуклонов в ядре атома (изотопический сдвиг), состояния внешних электронных оболочек (химический сдвиг) и пр. — положение спектральных линий на диаграмме Мозли может несколько изменяться. Изучение этих сдвигов позволяет получать детальные сведения об атоме

Закон мозли раскрыл физический смысл закона Менделеева, исследовал рентгеновские спектры некоторых эл-тов: квадратный корень из частоты для каждой линии спектра ентгеновских лучей есть приблизительно линейная ф-я атомного номера.

В результате появилась совр. формулировка П. з.: св-ва элементов, а также образуемых ими простых и сложных в-в находятся в периодич. зависимости от заряда ядра.

Физический смысл закона: хим св-ва элементов с увеличением порядкового номера периодически повторяются за счет повторения электронной конфигурации внешнего энергетического уровня.

2. Особенности протекания химических реакций в растворах электролитов. Признаки протекания реакций в растворах электролитов.

Электролиты – это вещества, растворы которых обладают ионной проводимостью.

Поскольку электролиты в растворах образуют ионы, то для отражения сущности реакций часто используют так называемые ионные уравнения реакций. Написанием ионных уравнений подчёркивается тот факт, что, согласно теории диссоциации, в растворах происходят реакции не между молекулами, а между ионами.

С точки зрения теории диссоциации при реакциях между ионами в растворах электролитов возможны два исхода:

1. Образующиеся вещества – сильные электролиты, хорошо растворимые в воде и полностью диссоциирующие на ионы.

2. Одно (или несколько) из образующихся веществ – газ, осадок или слабый электролит (хорошо растворимый в воде).

Например, можно рассмотреть две реакции:

2Al + 2NaOH + 6H2O = 2Na[Al(OH)4] + 3H2­, (1)

2Al + 2KOH + 6H2O = 2K[Al(OH)4] + 3H2­. (2)

В ионной форме уравнения (1) и (2) запишутся следующим образом:

2Al + 2Na+ + 2OH- + 6 H2O = 2Na+ + 2[Al(OH)4]- + 3H2­, (3)

2Al + 2K+ + 2OH- + 6 H2O = 2K+ + 2[Al(OH)4]- + 3H2­, (4)

В данном случае алюминий не является электролитом, а молекула воды записывается в недиссоциированной форме потому, что является очень слабым электролитом. Неполярные молекулы водорода практически нерастворимы в воде и удаляются из сферы реакции. Одинаковые ионы в обеих частях уравнений (3), (4) можно сократить, и тогда эти уравнения преобразуются в одно сокращённое ионное уравнение взаимодействия алюминия с щелочами:

2Al + 2OH- + 6H2O = 2[Al(OH)4]- + 3H2­. (5)

Очевидно, что при взаимодействии алюминия с любой щелочью реакция будет описываться уравнением (5). Следовательно, ионное уравнение, в отличие от молекулярного, относится не к одной какой-нибудь реакции между конкретными веществами, а к целой группе аналогичных реакций. В этом его большая практическая ценность и значение, например благодаря этому широко используются качественные реакции на различные ионы.

Так, при помощи ионов серебра Ag+ можно обнаружить присутствие в растворе ионов галогенов, а при помощи ионов галогенов можно обнаружить ионы серебра; при помощи ионов бария Ba2+ можно обнаружить ионы SO2- и наоборот.

С учётом вышеизложенного можно сформулировать правило, которым удобно руководствоваться при изучении процессов, протекающих в растворах электролитов.

Реакции между ионами в растворах электролитов идут практически до конца в сторону образования осадков, газов и слабых электролитов.

Следовательно, реакции идут с образованием веществ с меньшей концентрацией ионов в растворе в соответствии с законом действующих масс. Скорость прямой реакции пропорциональна произведению концентраций ионов реагирующих компонентов, а скорость обратной реакции пропорциональна произведению концентраций ионов продуктов. Но при образовании газов, осадков и слабых электролитов ионы связываются (уходят из раствора) и скорость обратной реакции уменьшается.

3. Как можно увеличить процентное содержание аммиака в равновесной системе

N2 + 3H2 Û 2NH3 + 92,4 кДж?

-----------------------------------------------------------------------------------------------------------------

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 22

Наши рекомендации