Пальмитиновая и стеариновая кислоты
Из высших предельных одноосновных карбоновых кислот наиболее важными являются следующие кислоты: СН3(СН2)14СООН – пальмитиновая и СН3(СН2)16СООН – стеариновая. В виде сложных эфиров глицерина они входят в состав растительных и животных жиров.
Характерные особенности пальмитиновой и стеариновой кислот:
1) это твердые вещества белого цвета;
2) эти кислоты не растворимы в воде;
3) углеводородные радикалы в молекулах этих кислот содержат неразветвленную цепь из пятнадцати и семнадцати атомов углерода, которые соединены δ-связими;
4) им свойственны те же реакции, что и другим карбоновым кислотам. Например, при взаимодействии с раствором щелочи они образуют соли: C15H31COOH + NaOH → C15H31COONa + Н2О;
5) натриевые соли пальмитиновых и стеариновых кислот (пальмиаты и стеараты) растворимы в воде;
6) они обладают моющими свойствами и составляют основную часть обычного твердого мыла;
7) из карбоновых солей, которые содержатся в мыле, получаются кислоты, действуя на их водный раствор сильной кислотой, например:
С17Н35СОО- + Na+ + H+ + HSO4- → С17Н35СООН + NaHSO4;
8) кальциевые и магниевые соли высших карбоновых кислот в воде не растворяются;
Олеиновая кислота является представителем непредельных одноосновных карбоновых кислот.
Существуют кислоты, в углеводородном радикале которых имеются одна или несколько двойных связей между атомами углерода.
Особенности олеиновой кислоты:
1) олеиновая кислота – это одна из высших непредельных кислот;
2) олеиновая кислота имеет формулу: С17Н33СООН, или СН3-(СН2)7-СН = СН-(СН2)7-СООН;
3) наряду с пальмитиновой и стеариновой кислотами она в виде сложного эфира глицерина входит в состав жиров;
4) в молекуле олеиновой кислоты в середине цепи имеется двойная связь.
Свойства олеиновой кислоты: а) в отличие от стеариновой кислоты, олеиновая кислота – жидкость; б) из-за наличия двойной связи в углеводородном радикале молекулы возможна цистрансизомерия:
в) олеиновая кислота – цисизомер; г) силы взаимодействия между молекулами сравнительно невелики и вещество оказывается жидким; д) молекулы трансизомера более вытянутые; е) молекулы трансизомера могут плотнее примыкать друг к другу; ж) силы взаимодействия между ними больше, и вещество оказывается твердым – это элаидиновая кислота; з) наряду с карбоксильной группой олеиновая кислота имеет двойную связь.
Сложные эфиры
Получение и строение сложных эфиров:
1) сложные эфиры образуются при взаимодействии кислот со спиртами. В общем виде получение их может быть выражено уравнением:
2) реакции кислот со спиртами, ведущие к образованию сложных эфиров, называются реакциями этерификации (лат. aether – эфир);
3) они проводятся в присутствии сильных минеральных кислот, при этом ионы водорода оказывают каталитическое действие;
4) названия сложных эфиров образуются из названий соответствующих кислот и спиртов, например: а) метиловый эфир уксусной кислоты СН3СООСН3; б) этиловый эфир муравьиной кислоты НСООС2Н5;
5) атом водорода функциональной группы в кислотах является подвижным, поэтому в спиртах при реакции этерификации водород должен отщепляться от молекулы кислоты, гидроксильная группа при этом отщепляется от молекулы спирта.
Как идет реакция, устанавливается при помощи меченых атомов:
а) если на карбоновую кислоту действовать спиртом, который вместо обычного атома кислорода содержит тяжелый изотоп массой 18:
RCOOH + HO18R → RCOO18R + Н2O;
б) после проведения реакции тяжелый изотоп кислорода находится в сложном эфире;
в) при реакции этерификации от молекулы спирта отделяется не гидроксильная группа, а только атом водорода, гидроксильная же группа отделяется от молекулы кислоты.
Физические свойства сложных эфиров:сложные эфиры одноосновных карбоновых кислот – это обычно жидкости с приятным запахом (этиловый эфир муравьиной кислоты – запах рома, бутиловый эфир масляной кислоты – запах ананаса и т. д.).