Геохимические типы базальтоидов (Л.В. Таусон)

Геохимические типы Na K Rb Ba Sr Ni Co V Cr Геохимические типы базальтоидов (Л.В. Таусон) - student2.ru
% г/т
Толеитовый 2,0 0,2 0,2
Андезитовый 2,7 1,3 2,8
Латитовый 2,7 2,5 10,5

При фракционной дифференциации основных магм соблюдается принцип «когерентности», т. е. сопряженное изменение содержания петрогенных и редких литофильных элементов – Y, Zr, Nb, La, Ce, Ba, Rb и др. (рис. 11).

Геохимические типы базальтоидов (Л.В. Таусон) - student2.ru

Рис. 11. Химические элементы щелочных магм
(А. И. Перельман, 1989)

Условия формирования толеитовых базальтов различны. Наиболее восстановленные породы предположительно связаны с верхней мантией и наличием двухвалентного железа. Менее восстановленные базальты содержат фаялит и магнетит. Для более окисленных пород характерен магнетит. В составе основных пород преобладают вулканиты. Среди плутонических их аналогов известны анортозиты.

С дифференциацией основной магмы связано образование медно-никелевых, титано-магнетитовых и других месторождений. Кристаллизацию ультраосновных и основных пород А. Е. Ферсман назвал протокристаллизацией. Характерные ее элементы имеют четные порядковые номера и валентности, малые радиусы ионов (рис. 12).

Геохимические типы базальтоидов (Л.В. Таусон) - student2.ru

Рис. 12. Характерные элементы протокристаллизации (1)
и гранитных магм (2) (А. И. Перельман)

Протокристаллизацию А. Е. Ферсман связывал с кристаллизацией ультраосновных и основных пород. Для минералов прото­кристаллизации характерны разнообразные химические элементы примеси, накопление которых обусловлено законами изоморфизма.В складчатых областях породы протокристаллизации представлены узкими и длинными реликтовыми «офиолитовыми поясами» – комплекссом эффузивных и интрузивных пород широкого диапазона по составу в типичных проявлениях магматизма геосинклинальной стадии развития складчатых областей. Они встречаются в тихоокеанском поясе (Калифорнии, Японии, Австралии); Альпийском (Италии, Суматре); на Урале, распространены в зонах спрединга срединно-океанических структур Атлантического и Индийского океанов.

По законам изоморфизма минералы ультраосновных (оливин, пироксен) и основных (оливин, пироксен, основной плагиоклаз) пород обладают наибольшей изоморфной емкостью с разнообразными примесями элементов.

Средние породы или мезиты, содержат 53–64 % SiO2. Представлены ассоциацией роговой обманки (частично биотита), средних плагиоклазов, образующих диориты и сочетания роговой обманки, пироксена, калиевого полевого шпата в составе сиенита. Они занимают небольшой объем от общего объема магмы.

Содержание Al2O3 в диоритах около 16–17 %, FeО + Fe2O3 – 9–10, Mg – 4,5–6,0, CaO – 8–8,5, K2O + Na2O до 5 %.

Химический состав сиенитов: SiO2 – 52–65 %, Al2O3 – 12–18, содержание щелочей относительно повышенное: Na2O + K2O – 10–15, FeO + Fe2O3 – 4–5, CaO – 2–4, MgO – 1–2 % (см. рис. 10).

Кислые породы, или ацидиты (граниты, гранитоиды и др.), с содержанием SiO2 более 64 %. Гранитоиды относятся к полигенетическим породам. Магма кислых пород формируется за счет «былых биосфер» (В. И. Вернадский), дифференциации основных или средних магм, путем «гранитизации» (Д. С. Коржинский). По Ф. А. Летникову, трансмагматические растворы гранитизируют гнейсы.

Однако, как бы ни образовывались кислые породы, к какому геохимическому типу ни относились, они имеют ряд общих геохимических черт. В отличие от пород протокристаллизации в кислых породах накапливаются нечетные элементы, ионы с валентностью I и III (Na+, K+, Rb+, Cs+, Cl, F, Al3+ и др.). Характерны большие радиусы ионов, низкие энергии решеток минералов. Минералы гранитоидов имеют низкую изоморфную емкость, содержат меньше примесей, чем минералы основных пород.

Согласно В. В. Ляховичу, носителями и концентраторами большинства редких и рудных элементов в гранитоидах являются биотит, кислые плагиоклазы. Биотит помогает выяснить генезис гранитоидов. В них редкие элементы изоморфно входят в решетки главных минералов и образуют включения собственных минералов (U, Th, Tr, Zn, Ti, Fe, Sn и др.). Олово в биотите может изоморфно замещать Fe, Ti. Во многих гранитоидах повышено содержание рудных элементов, поэтому они получили название редкометалльных, оловоносных, вольфрамоносных и т. д. Граниты местами обогащаются Pb, Ni, Co, V, Zn, F, Se, Cr, Ti, Zr, Y, Yb, Sn, Mo, Ga, Li, Rb, Cs (см.рис. 10).

Л. В. Таусон при оценке потенциальной рудоносности гранитоидов основное значение придает особенностям эманационной диф­ференциации элементов.

Щелочные породы имеют высокое содержание Na2O + K2O, а по содержанию SiO2 могут быть от кислых до ультраосновных (с преобладанием SiO2 53–64 %).

Породы агпаитового ряда образуются, если Na2O + K2O больше или равно Al2O3, если меньше Al2O3, – миаскитового с невысоким содержанием химических элементов. По Л. Н. Когарко, с появлением щелочного магматизма на границе архея – протерозоя связывают резкую смену геодинамического режима Земли. Происходит субдукция окисленной океанической коры, содержащей повышенные концентрации летучих компонентов. Появление окисленной флюидной фазы способствует началу крупномасштабных метасоматических процессов и генезису щелочных магм, обогащенных рудными литофильными элементами.

Все вулкано-магматические образования Беларуси позднего девона принадлежат к щелочному ряду. Преобладающими являются породы калиевой серии. Геохимические особенности этих образований позволяют их идентифицировать как континентальную рифтогенную вулкано-магматическую формацию (Н.В. Веретенников и др.).

Крупнейший в мире щелочной массив находится в Хибинах, меньшие его площади встречаются на Урале, в Восточной Сибири, Гренландии, Южной и Восточной Африке и других регионах.

В щелочной магме содержание Na и Kдостигает 15 %, в базальтах 5–7 %. Количество SiO2 понижено, могут отсутствовать кварц, полевые шпаты, основные породы нефелинового ряда. По содержанию SiO2 одни щелочные породы относятся к ультраосновным, другие – к основным и средним. В них могут концентрироваться Li, Rb, Сs, Сa, Sr, Ti, Zr, Hf, Th,. Nb, Ta, U, Ga, Tl, P, F, Cl (см. рис. 11).

В некоторых видах щелочной магмы господствует окислительная или восстановительная обстановка. Амфотерные элементы образуют комплексные анионы с большим радиусом и пониженной энергией кристаллической решетки, поэтому кристаллизация начинается с бесцветных минералов и заканчивается цветными, что противоположно порядку кристаллизации других магм. В щелочных магмах высокая концентрация летучих F, Cl, CO2, S, P и др., а также большое разнообразие минералов (в Ловозерском массиве около 300). Главные минералы – нефелин, пироксен, апатит, полевые шпаты – содержат изоморфные редкие элементы (Sr, РЗЭ, Rb, Cs, Gа, Nb, Ta). Щелочные породы относятся к полигенетическим.

Со щелочными породами генетически связаны карбонатиты – карбонатные породы состоящие из кальцита, доломита и анкерита. Иногда они занимают жерла древних вулканов. Такой расплав формируется при насыщении его CO2 и щелочами (А. И. Перельман, 1989).

Карбонатиты характерны для зон глубинных разломов платформ и щитов, рифтовых зон Восточной Африки. Полагают, что химические элементы мигрировали в щелочных растворах из мантии с глубины 100–150 км. В этих условиях возникали ионные комплексы Nb, Ta, Zr, U, Ce, Ti. В карбонатитах и их производных установлено свыше 70 минералов. Генезис карбонатитовой магмы дискуссионный: восстановительные флюиды из верхней мантии окислялись на небольших глубинах (CO → CO2; H2 → H2O) (Ф. А. Летников); это продукт дифференциации кимберлитовой магмы (С. М. Кравченко, И. Т. Расс); вместе с магматическими существуют и гидротермальные карбонатиты.

8.3. Процессы магматического минералообразования

В ходе кристаллизации магмы выделяют ряд процессов, которые приводят к формированию минеральных видов. Ниже рассмотрим эти процессы.

Кристаллизационная дифференциация – неоднократное отделение все более поздних и более кислых продуктов от более ранних основных и ультраосновных.. Геохимические данные остаются неизменными даже в расплаве и свидетельствуют об их родственном образовании, что подтверждают изотопные отношения некоторых элементов.

Гравитационная дифференциация – процесс расслоения неоднородного магматического расплава под влиянием гравитации, определяется по вязкости магмы. При прочих равных условиях минералы гравитационной дифференциации более характерны для ультраосновных, основных и средних щелочных магм.

Ликвационная дифференциация – разжижение, разделение единого расплава на две несмешивающиеся жидкости в результате неоднородности охлаждения и гравитации. Например, разделение сульфидного и силикатного расплава. Из-за разности их свойств дальнейшая дифференциация может вызвать явление гравитационной дифференциации. Сульфиды как тяжелые минералы могут осаждаться и формировать рудную залежь.

Ассимиляция и контаминация. При внедрении магмы во вмещающие породы происходит поглощение и растворение обломков этих пород в магматическом расплаве, т. е. ассимиляция. Если ассимилировано большое количество породы, заметно отличающейся по химическому составу от расплава, происходит его «загрязнение», т. е. контаминация. Например, ассимиляция магмой известняков, но контаминация магмы известняками. Эти явления впоследствии при кристаллизации расплава будут сказываться на составе минералов, характере парагенной ассоциации химических элементов. Например, известняки будут формировать не кислый плагиоклаз, а основной.

Десиликация – внедрение расплава, богатого кремнеземом, в породы, бедные кремнеземом (известняки, ультраосновные породы), и извлечение SiO2 из расплава за счет связывания его Mg, Ca, Fe вмещающих пород. Это обедняет расплав SiO2, в избытке появляется Al2O3, который выделяется с образованием корунда. Высвобождающийся кремнезем выпадает, образуя опал и халцедон.

Автометаморфизм (самоизменение, самопревращение) – группа процессов, происходящих при застывании магмы. Воздействие на продукты магматической кристаллизации более поздних (остаточных) порций расплава той же магмы или обособившихся из этой магмы летучих компонентов, гидротермальных растворов. Выделяют собственно магматическую (Т > 600 °С), пневматолическую (Т 600–375 °С) и гидротермальную (Т < 375 °С) стадии. Сюда входят серпентинизация перидотитов, альбитизация спилитов, грейзенизация аляскитов, пропилитизация вулканических пород основного и среднего состава.

Таким образом, геохимические процессы и термодинамический геохимический барьер, которые сопровождают магматическое минералообразование, участвуют в формировании промышленно важных минеральных месторождений:

· месторождения, связанные с ультраосновными породами – алмазы в кимберлитах и перидотитах; хромиты в дунитах; платина и платиноиды в хромитоносных дунитах;

· месторождения, связанные с основными породами – ильменит–титано­магнетит; Cu – Ni – сульфидные ликвационно-магматические; платина и палладий;

· месторождения, связанные со щелочными, ультраосновными, щелочными породами и карбонатитами, – апатит; комплексные (магнетит, слюда-флагопит); аппатит, а также минерализация на Tr, Nb, Ta, Zr, Ti, U в карбонатитах;

· месторождения отдельных строительных и облицовочных материалов (туф, лабрадориты и др.).

Наши рекомендации