Количественной характеристикой межионных электростатических взаимодействий является ионная сила раствора.
Ионной силой раствора называют величину, равную полусумме произведения концентраций всех находящихся в растворе ионов на квадрат их заряда:
I = 0,5 ∑ CiZi2 , где Ci – молярная концентрация иона i в растворе; Zi – заряд иона i.
Гетерогенные процессы – это процессы на границе раздела фаз. К гетерогенным относят прежде всего процессы, связанные с образованием и растворением малорастворимых веществ ионного типа. При контакте таких веществ (сильных электролитов) с водой часть ионов переходит в раствор и устанавливается динамическое равновесие между гидратированными ионами электролита в водном растворе и кристаллами твёрдой фазы – гетерогенное равновесие. Раствор, находящийся в равновесии с твёрдой фазой, называют насыщенным.
Термодинамическим условием наступления в системе равновесия является постоянство энергии Гиббса ΔG =0, а кинетическим условием – равенство скоростей процессов растворения и кристаллизации.
Обратимые процессы растворения происходят на границе раздела фаз независимо от количества кристаллического вещества, потому что его концентрация (и активность) в твёрдой фазе остаётся постоянной. Константу гетерогенного равновесия Ks называют константой растворимости.
Чем меньше активность (концентрация) ионов в растворе, тем меньше значение KS и, следовательно, тем меньше растворимость.
Реакции ионного обмена.
Реакции между водными растворами электролитов – это реакции, в которыз участвуют ионы. Поэтому такие реакции называют ионными реакциями.
Обмен – в-ва обмениваются между собой своими составными частями без изменения составных частей.
K1A1 + K2A2 <-> K1A2 + K2A1 - реакция идёт, если сдвинуто равновесие в сторону продуктов реакции.
Условия протекания реакций ионного обмена до конца.
Выпадение осадка (трудно растворимое вещество)
Выделение газа
Образование слабого электролита, малодиссоциирующего вещества.
Образование комплексного иона.
Pb(OH)2 + 2NaOH -> Na2{Pb(OH)4}
Если в растворах нет таких ионов, которые могут связываться между собой с образованием осадка, газа, слабого электролита или комплексного иона, то реакция является обратимой. При сливании подобных растворов получается смесь ионов.
Диссоциация воды.
Вода – слабый амфотерный электролит. И как слабый электролит в незначительной степени диссоциирует на ионы, которые находятся в равновесии с недиссоциированными молекулами:
H2O <-> H+ + OH-
KH2O = {H+}{OH-} / {H2O}
Учитывая значение константы диссоциации воды и концентрацию недиссоциированных молекул воды в моль/л, получим выражение, называемое ионным произведением воды:
KH2O = {H+}{OH-} = 10-14
Постоянство произведения {H+}{OH-} означает, что в любом водном растворе ни концентрация ионов водорода, ни концентрация гидроксид-ионов не может быть равна нулю. Иными словами, любой водный раствор кислоты, основания или соли содержит как H+ , так и OH- -ионы. В чистой воде: {H+} = {OH-} = 10-7 моль/л. Если в неё добавить кислоту, то {H+} станет больше 10-7, а {OH-} меньше. И наоборот.
Из постоянства произведения {H+}{OH-} следует, что при увеличении концентрации одного из ионов воды соответственно уменьшает концентрация другого иона. Это позволяет вычислить концентрацию одного вида ионов, когда известна концентрация другого.
Концентрации ионов водорода, выраженные в моль/л, обычно составляют малые доли единицы. Использование таких чисел не всегда удобно. Поэтому введена особая единица измерения концентрации ионов водорода, называемая водородным показателем и обозначается рН.
Водородным показателем рН называется отрицательные десятичный логарифм концентрации ионов водорода: рН = -lg{H+}.
Гидроксильный показатель рОН называется отрицательные десятичный логарифм ионов гидроксония: рОН = -lg{OH-}.
рН + рОН = 14
рН = 7 – нейтральная среда;
рН < 7 – кислая среда;
рН > 7 – щелочная среда.
Одним из способов определения кислотности растворов является использование индикаторов (это сложные органические кислоты или основания):
рН < 7 – кислая среда | рН = 7 – нейтральная среда | рН > 7 – щелочная среда | |
Фенолфталеин | |||
бесцветный | бесцветный | малиновый | |
Лакмус | |||
красный | фиолетовый | синий | |
Метилоранж | |||
красный | оранжевый | жёлтый | |
Теория кислот и оснований.
Согласно теории кислот и оснований Бренстеда – Лоури: кислотами называют молекулы или ионы, способные отдавать протон, т.е. быть донорами ионов водорода (протонов); основаниями называют молекулы или ионы, способные присоединять протоны, т.е. быть акцепторами ионов водорода (протонов).
Молекулу и ион (или два иона), отличающиеся по составу на один протон, называют сопряженной кислотно-основной парой. В водных растворах кислот и оснований всегда имеются, как минимум, две сопряженные пары, одну из которых образует растворитель.
Равновесия, устанавливающиеся в растворах между кислотами и сопряжёнными основаниями, называют протолитическими. К протолитическим реакциям относят процессы ионизации кислот и оснований, например:
NH3 + H2O <-> NH4+ + OH-
О-е к-та к-та о-е
H2O + HCl <-> H3O+ + Cl-