Ионизация воды. Водородный показатель.

Электропроводность химически чистой воды ничтожно мала. Она обусловлена присутствием в воде ионов гидроксония и гидроксила (в очень малых количествах):

H2O …….H2O = H3O+ + OH- ,

или упрощенно Н2О = Н+ + ОН-

 
  Ионизация воды. Водородный показатель. - student2.ru

Процесс дисоциации (ионизации) воды обратимый, равновесный, характеризуется константой равновесия:

При таком малом значении константы можно считать, что концентрация недиссоциированных молекул практически равна исходной концентрации воды. При температуре 25°С плотность воды

r@1 г/см3, масса 1 литра воды – 1000 г, концентрация воды С(Н2О)@[H2O] = 1000/18 = 55,5(5) моль/л. Тогда, [H+]×[OH-] = K×[H2O] = 1,8×10-16×55,5(5) = 1×10-14.

Выражение КВ (или КW) = [H+]×[OH-]=const = 1×10-14 (при 25°С) – назывется ионное произведение воды

(или константа автопротолиза)

В любом водном растворе ионное произведение воды есть величина постоянная для данной температуры. Следовательно, в любом водном растворе (кислоты, щелочи, соли) концентрации

Н+-ионов или ОН- -ионов не могут быть равны нулю. Рассмотрим несколько примеров.

ПРИМЕРЫ. 1) В воде [H+] = [OH-] = Ö КВ = 1×10-7 моль/л рН = -lg[H+] = 7, нейтральный раствор.

2) Раствор 0,1 моль/л NaOH – это сильный электролит, диссоциирует полностью,

[OH-] = 0,1 моль/л, [H+] = КВ / [OH-] = 1×10-14/0,1 = 1×10-13 моль/л, рН = 13, щелочной р-р.

3) Раствор 0,001 моль/л НС1 – это сильная кислота, диссоциирует полностью,

[H+] = 0,001 моль/л, рН = 3, кислотный раствор.

В любом водном растворе всегда есть ионы Н+ и ОН- за счет ионизации воды. Концентрации их взаимосвязаны. Для того, чтобы описать характер раствора (кислый, нейтральный, щелочной) достаточно знать концентрацию ионов Н+ или водородный показатель рН = -lg[H+]. Из ионного произведения воды следует, что в любом водном растворе рН + рОН = 14, где рОН = -lg[OH-].

Шкала рН. -1 0 7 14

рН < 7 рН > 7

кислая среда щелочная среда

Величину рН измеряют с помощью индикаторов (растворов и бумаги) и приборов рН-метров.

Индикаторы – растворы слабых органических кислот или оснований, у которых молекула и сложный органический ион имеют разную окраску, например, индикатор фенолфталеин –слабая кислота, в растворе частично диссоциирует: HInd Û H+ + Ind-

бесцветный красный

Избыток ОН- ¾¾¾¾¾¾¾¾¾¾®

 
  Ионизация воды. Водородный показатель. - student2.ru

¾¾¾¾¾¾¾¾¾¾ Избыток Н+

Поскольку каждый индикатор имеет свое значение константы ионизации, то переход окраски происходит при определенном значении рН. Для фенолфталеина рН перехода окраски 9.

Универсальный индикатор – смесь индикаторов, которой пропитывают бумагу.

Как приборы, так и индикаторы фиксируют не истинную концентрацию ионов Н+, а активную, поэтому рН = -lg aH , и только в очень разбавленных растворах рН = -lgCн.

ГИДРОЛИЗ СОЛЕЙ

Гидролиз – взаимодействие соли с водой, в результате которого изменяется рН раствора.

Гидролизу подвергаются соли, содержащие в своем составе:

1) анион слабой кислоты;

2) катион слабого основания (NH4+ и катионы других металлов, кроме щелочных и Ca2+, Sr2+, Ba2+);

3) и анион слабой кислоты, и катион слабого основания. Такие соли гидролизуются в значительной степени.

Na2CO3+H2O = NaHCO3+NaOH или в ионном виде: CO32- +H2O = HCO3- +OH- - I ступень гидролиза

Кислая соль

NaHCO3+H2O = H2CO3+NaOH или в ионном виде: HCO32- +H2O = H2CO3+OH- - 2 ступень гидролиза

___________________________ _______________________

Na2CO3+2H2O = H2CO3+2NaOH CO32- +2H2O = H2CO3+2OH-

Таким образом, при растворении соды в воде образуется щелочной раствор, рН>7.

NH4Cl + H2O = NH3×H2O + HCl

NH4+ + H2O = NH3×H2O + H+ - кислотная среда, рН< 7.

FeCl2 + H2O =t0= Fe(OH)Cl¯ + HCl Fe2+ + H2O + Cl- = Fe(OH)Cl¯ + H+

Основная соль

Fe(OH)Cl + H2O = t0= Fe(OH)2¯ + HCl Fe(OH)Cl¯ + H2O = Fe(OH)2¯ + H+ + Cl-

ХИМИЧЕСКАЯ СВЯЗЬ И СТРОЕНИЕ МОЛЕКУЛ

При взаимодействии атомов образуются молекулы, кристаллы, полимерные структуры и т.д. – все вешества.

Это взаимодействие сопровождается изменением электронной плотности, т.е. перегруппировкой электронов взаимодействующих атомов, а так же изменением энергетического состояния системы.

Химическая связь, возникающая между атомами, есть результат перегруппировки электронов в поле ядер взаимодействующих атомов.

Энергия и длина химической связи. При образовании молекул из атомов энергия выделяется. Для того, чтобы разрушить молекулы, надо разорвать химические связи, т.е. затратить энергию.

Мерой прочности любой химической связи служит то количество энергии, которое выделяется при образовании моля связей из нейтральных невозбужденных газообразных атомов.

Н + Н = Н2 , DНосвязи = -435 кДж/моль

Энтальпию химической связи можно вычислить, используя справочные термодинамические данные.

Длина химической связи. Это расстояние между ядрами атомов в молекуле. Она всегда меньше, чем сумма радиусов взаимодействующих атомов. Чем прочнее связь, тем меньше расстояние между ядрами, тем меньше длина связи.

Энергия и длина связи могут быть определны экспериментально.

В зависимости от характера распределения электронной плотности в веществе различают следующие типы химической связи: ионная, ковалентная, металлическая, водородная, силы межмолекулярного взаимодействия.

Квантово-механические представления об образовании химической связи.

Поскольку силы, действующие внутри молекулы, аналогичны тем, которые действуют внутри атома, то квантово-механическое описание строения молекул получают на основе приближенного решения волнового уравнения Шредингера. Впервые такой расчет был проведен в 1927г. Гейтлером и Лондоном для молекулы водорода. Записанное ими уравнение учитывало следующие виды взаимодействия: 1) силы притяжения между ядрами и электронами; 2) силы отталкивания между ядрами и между электронами; 3) собственное движение электронов, т.е. учтены спиновые характеристики.

В результате расчета впервые были получены значения энергии связи, которые хорошо согласовывались с экспериментальными данными. Результаты решения волнового уравнения можно представить графически.

При атипараллельных спинах (симметричная y функция) сближение атомов водорода до расстояния r0 сопровождается уменьшением потенциальной энергии системы (кривая 1), образуется устойчивая молекула Н2. Дольнейшее сближение атомов ведет к возрастанию энергии, вследствие возрастания межъядерного отталкивания. Кривая (1) проходит через минимум при r0 =0,074 нм, что соответствует равновесной длине связи в молекуле Н2.

Если в атомах спины электронов антипараллельны (антисимметричная y функция), сближение приводит к постоянному возрастанию энергии системы и химическая связь между атомами не образуется.

Таким образом, образование химической связи между атомами в молекуле водорода по Гейтлеру и Лондону обусловлено тем, что движение электронов с антипараллельными спинами около обоих ядер приводит к перекрыванию электронных облаков и росту плотности (y2) электронного облака в межъядерном пространстве, образованию связывающей молекулярной орбитали (МО s связ.).

Наши рекомендации