Общая схема регуляция эндотелия адаптивных реакции
В нашем организме есть две взаимосвязанные системы протеолитических ферментов, в результате работы которых регулируется сосудистый тонус.
1. РЕНИН-АНГИОТЕНЗИН-АЛЬДОСТЕРОНОВАЯ СИСТЕМА (РААС-система).
Работа этой системы направлена на повышение артериального давления.
2. КИНИНОВАЯ СИСТЕМА. Направлена на понижение артериального давления.
Активация обеих систем сводится к синтезу биологически активных низкомолекулярных пептидов из их предшественников путем реакций ограниченного протеолиза.
Главная роль принадлежит РААС, которая регулирует сосудистый тонус и водно-солевой обмен.
В почках в клетках юкстагломерулярного аппарата (ЮГА) синтезируется РЕНИН - протеолитический фермент. Ренин участвует в регуляции сосудистого тонуса, превращая ангиотензиноген в декапептид ангиотензин-I путем ограниченного протеолиза. Из ангиотензина-I под действием фермента карбоксикатепсина образуется (тоже путем ограниченного протеолиза) октапептид ангиотензин-II. Он обладает сосудосуживающим эффектом, а также стимулирует выработку гормона коры надпочечников - альдостерона. Альдостерон усиливает реабсорбцию натрия и воды в почечных канальцах - это приводит к увеличению объема крови, циркулирующей в сосудах. В результате повышается артериальное давление. Когда молекула ангиотензина-II выполнит свою функцию, она подвергается тотальному протеолизу под действием группы специальных протеиназ - ангиотензиназ. Так работает РЕНИН-АНГИОТЕНЗИН-АЛЬДОСТЕРОНОВАЯ СИСТЕМА.
Выработка ренина зависит от кровоснабжения почек. Поэтому при снижении артериального давления выработка ренина увеличивается, а при повышении - снижается. При патологии почек иногда наблюдается повышенная выработка ренина и может развиваться стойкая гипертензия (повышение артериального давления).
Ренин-ангиотензин-альдостероновая система работает в тесном контакте с другой системой регуляции сосудистого тонуса: КАЛЛИКРЕИН-КИНИНОВОЙ СИСТЕМОЙ, действие которой приводит к понижению артериального давления.
В почках синтезируется белок кининоген. Попадая в кровь, кининоген под действием сериновых протеиназ - калликреинов превращается в вазоактивные пептиды - кинины: брадикинин и каллидин. Брадикинин и каллидин обладают сосудорасширяющим эффектом - понижают артериальное давление. Инактивация кининов происходит при участии карбоксикатепсина - этот фермент одновременно влияет на обе системы регуляции сосудистого тонуса, что приводит к повышению атериального давления. Ингибиторы карбоксикатепсина применяются в лечебных целях при лечении некоторых форм артериальной гипертензии.
Метаболические особенности миокарда
сердечная мышца по ряду хим-х соединений занимает промежуточное положение м-у скелетной мускулатурой и гладкими мышцами. В сердечной мышце значительно меньше миофибриллярных белков, чем в скелетной. Концентрация белков стромы в сердечной мышце выше, чем в скелетной. Известно так же, что миозин, тропомиозин и тропонин с.м. заметно отличаются по своим физико-химическим св-вам от соответствующих белков скелетной мускулатуры. Также отличается и фракционный с-в саркоплазматических белков. Саркоплазма миокарда содержит больше миоальбумина.
Содержание АТФ в миокарде ниже чем в скелетной, но выше чем в гладкой. По содержанию гликогена миокард также занимает промежуточное положение. Миокард по сравнению с другими мышечными тканями богаче фосфолипидами, при окислении которых вырабатывается значительная часть энергии, необходимая для его сокращения.
123.
СОСТАВ ПЛАЗМЫ КРОВИ:
90% - вода
6-8% - белки
2% - органические небелковые соединения
1% - неорганические соли
Натрий – основной осмотически активный ион внеклеточного пространства. В плазме концентрация Na+ приблизительно в 8 раз выше (132-150 ммоль/л), чем в эритроцитах.
При гипернатриемии развивается синдром, связанный с гипергидратацией орг-ма. Накопление натрия в плазме крови наблюдается при паринхиматозном нефрите, у больных с врожденной сердечной недостаточностью, при первичном и вторичном гипераальдостеронизме. .
Гипонатриемия сопровождается дегидратацией организма. Коррекция натриевого обмена осуществляется введением раствора натрия хлорида с расчетом дефицита его в неклеточном пространстве и клетке.
Калий. Концентрация К+ в плазме колеблется от 3.8 до 5.4 ммоль/л; в эритроцитах его в20 раз больше. Уровень калия в клетке значительно выше, чем во внеклеточном пространстве, поэтому при заболеваниях сопровождающихся усиленным клеточным распадом или гемолизом, содержание калия в сыворотке крови уменьшается.
Гиперкалиемия – при острой почечной недостаточности и гипоф-и коры надпочечников. Недостаток альдостерона приводит к усилению выведения с мочой натрия и воды и задержке в организме калия.
При усиленной продукции альдостерона возникает гипокалиемия. Развивающаяся гипокалиемия вызывает тяжелые нарушения работы сердца.
Кальций принимает активное участие в механизме нервно-мышечной возбудимости как антагонист К+ , мышечного сокращения, свертывания крови образует структурную основу костного скелета, влияет на проницаемость кл-х м-н.
Гиперкальциемия наблюдается при развитии опухолей в костях, гиперплазии, или аденоме околощитовидных желез. Кальций поступает в плазму из костей и они становятся ломкими. Гипокальциемия наблюдается при гипопаратиреозе. Выпадение ф-й околощитовидных желез приводит к резкому снижению содержания К+ в крови, что может сопровождаться судорожными приступами. Понижение содержания К в плазме отмечают при рахите, механической желтухе, нефрозах, глорулонефритах.
Фосфор. В клинике при исследовании крови различают следующие фракции фосфора: общий фосфат, кислоторастворимый фосфат, липоидный фосфат и неорганический фосфат. Для клинических целей чаще пользуются определением неорганического фосфата в плазме. Его содержание в плазме увеличивается при гипопаратиреозе, гипевитоминозе витамина Д, при приеме тироксина, облучении организма УФ лучами, при острой желтой атрофии печени, миеломе, лейкозах.
Гипофосфатемия хар-на для рахита. Снижение уровня неорганического фосфата в плазме отмечается на ранних стадиях рахита, когда клинические симптомы недостаточно выражены. Гипофосфатемия наблудается при введении инсулина, гиперпаратиреозе, остеомаляции.
Железо. (0.02 ммоль/л) Ежедневно в процессе распада гемоглобина освобождается около 25 мг. Железа, столько же потребляется при его синтезе. Повышение содержания железа в плазме наблюдается при ослаблении синтеза гемоглобина или усиленном распаде эритроцитов.
Недостаток железа в организме может вызвать нарушение последнего этапа синтеза гемма – превращение протопорфирина 9 в гемм. В результате развивается анемия, сопровождающаяся увеличением содержания порфиринов в эр-х.
АЛЬБУМИНЫ
Альбумины – простые низкомолекулярные гидрофильные белки. В молекуле альбумина содержится 600 аминокислот. Молекулярная масса 67 кДа. Альбумины, как и большинство других белков плазмы крови, синтезируются в печени. Примерно 40% альбуминов находится в плазме крови, остальное количество - в интерстициальной жидкости и в лимфе.
ФУНКЦИИ АЛЬБУМИНОВ
Определяются их высокой гидрофильностью и высокой концентрацией в плазме крови.
1. Поддержание онкотического давления плазмы крови. Поэтому при уменьшении содержания альбуминов в плазме падает онкотическое давление, и жидкость выходит из кровяного русла в ткани. Развиваются "голодные" отеки. Альбумины обеспечивают около 80% онкотического давления плазмы. Именно альбумины легко теряются с мочой при заболеваниях почек. Поэтому они играют большую роль в падении онкотического давления при таких заболеваниях, что приводит к развитию «почечных» отеков.
2. Альбумины – это резерв свободных аминокислот в организме, образующихся в результате протеолитического расщепления этих белков.
3. Транспортная функция. Альбумины транспортируют в крови многие вещества, особенно такие, которые плохо растворимы в воде: свободные жирные кислоты, жирорастворимые витамины, стероиды, некоторые ионы (Ca2+, Mg2+). Для связывания кальция в молекуле альбумина имеются специальные кальцийсвязывающие центры. В комплексе с альбуминами транспортируются многие лекарственные препараты, например, ацетилсалициловая кислота, пенициллин.
ГЛОБУЛИНЫ
В отличие от альбуминов глобулины не растворимы в воде, а растворимы в слабых солевых растворах.
a1-ГЛОБУЛИНЫ
В эту фракцию входят разнообразные белки. a1-глобулины имеют высокую гидрофильность и низкую молекулярную массу - поэтому при патологии почек легко теряются с мочой. Однако их потеря не оказывает существенного влияния на онкотическое давление крови, потому что их содержание в плазме крови невелико.
Функции a1-глобулинов
1. Транспортная. Транспортируют липиды, при этом образуют с ними комплексы - липопротеины. Среди белков этой фракции есть специальный белок, предназначенный для транспорта гормона щитовидной железы тироксина - тироксин-связывающий белок.
2. Участие в функционировании системы свертывания крови и системы комплемента - в составе этой фракции находятся также некоторые факторы свертывания крови и компоненты системы комплемента.
3. Регуляторная функция. Некоторые белки фракции a1-глобулинов яляются эндогенными ингибиторами протеолитических ферментов. Наиболее высока в плазме концентрация a1-антитрипсина. Содержание его в плазме от 2 до 4 г/л (очень высокое), молекулярная масса - 58-59 кДа. Главная его функция - угнетение эластазы - фермента, гидролизующего эластин (один из основных белков соединительной ткани). a1-антитрипсин также является ингибитором протеаз: тромбина, плазмина, трипсина, химотрипсина и некоторых ферментов системы свертывания крови. Количество этого белка увеличивается при воспалительных заболеваниях, при процессах клеточного распада, уменьшается при тяжелых заболеваниях печени. Это уменьшение - результат нарушения синтеза a1-антитрипсина, и связано оно с избыточным расщеплением эластина. Существует врожденная недостаточность a1-антитрипсина. Считают, что недостаток этого белка способствует переходу острых заболеваний в хронические.
К фракции a1-глобулинов относят также a1-антихимотрипсин. Он угнетает химотрипсин и некоторые протеиназы форменных элементов крови.
a2-ГЛОБУЛИНЫ. Высокомолекулярные белки. Эта фракция содержит регуляторные белки, факторы свертывания крови, компоненты системы компемента, транспортные белки. Сюда относится и церулоплазмин. Этот белок имеет 8 участков связывания меди. Он является переносчиком меди, а также обеспечивает постоянство содержания меди в различных тканях, особенно в печени. При наследственном заболевании - болезни Вильсона - уровень церулоплазмина понижается. Вследствие этого повышается концентрация меди в мозге и печени. Это проявляется развитием неврологической симптоматики, а также циррозом печени.