Лекция №3 «Адсорбция на неподвижной поверхности раздела фаз»
Лекция №3 «Адсорбция на неподвижной поверхности раздела фаз»
При адсорбции веществ на поверхности твёрдых адсорбентов изменяется химический состав поверхности адсорбента. Количественной характеристикой этого процесса является величинаудельной адсорбции Г.Удельная адсорбция – это равновесное количество поглощаемого вещества, приходящееся на единицу поверхности или массы адсорбента.
В качестве адсорбентов обычно применяют мелкоизмельченные вещества или пористые тела, что обеспечивает большую площадь поверхности раздела фаз, которую определить практически невозможно. Поэтому удельная адсорбция для твердых адсорбентов преимущественно выражается в молях поглощенного вещества на единицу массы адсорбента:
Г = (моль/г),
где n –количество адсорбата, моль; m – масса адсорбента, г.
Адсорбция газов и паров адсорбата на твердых адсорбентах – процесс, протекающий за счет сил Ван-дер-Ваальса и водородных связей. Количество поглощенного газа или пара на твёрдых поверхностях зависит от следующих факторов.
1. От свободной поверхностной энергии адсорбента.Она весьма велика у адсорбентов с аморфной структурой (активированный уголь) и у кристаллических веществ (оксиды алюминия, кремния). Адсорбент тем эффективнее, чем меньше измельчен.
2. От сродства адсорбтива к поверхности адсорбента.Полярные вещества лучше адсорбируются на полярных адсорбентах, а неполярные на неполярных. Чем больше адсорбент склонен к межмолекулярным взаимодействиям, тем интенсивнее идет адсорбция.
3. При физической адсорбции из смеси газов или паров лучше адсорбируется тот компонент, который легче сжимается, поскольку его молекулы более склонны к межмолекулярным взаимодействиям.
4. От концентрации адсорбата. Зависимость имеет сложный характер, так как с адсорбцией идет одновременно процесс десорбции. При равенстве скоростей этих процессов наступает равновесие.
Уравнение Фрёйндлиха
Существует еще одно уравнение, описывающее изотерму адсорбции, называемое уравнением Г. Фрёйндлиха(1906):
А= kС1/nилиА= kp1/n
где k и 1/n – константы. (Константа, являющаяся показателем степени, обычно записывается в виде 1/n, а не n, чтобы подчеркнуть, что равновесная концентрация или равновесное давление возводится в степень, которая всегда бывает меньше единицы).
Уравнение Фрёйндлиха является эмпирическим, т. е. за ним не стоит строгой теории. Оно было выбрано среди других уравнений как уравнение параболы, по виду напоминающей изотерму адсорбции. Поэтому теоретическая изотерма, построенная с его помощью, совпадает с экспериментальной только в области средних концентраций. В области же малых и, в особенности, очень больших концентраций (давлений) наблюдаются значительные расхождения между экспериментом и теоретически предсказанными величинами адсорбции. Однако в практической деятельности редко приходится иметь дело с такими областями концентраций. Поэтому уравнение Фрёйндлиха в силу его простоты и лёгкости определения констант, используется очень широко. Особенно часто его используют при исследовании адсорбции на пористых и порошкообразных адсорбентах.
Уравнение Фрейндлиха линеаризуется с помощью логарифмирования:
lgA = lgk + 1/nklgC
или . lgA= lgk+1/ nklgp
С учётом этого для графического определения констант по нескольким экспериментальным данным строится логарифмическая изотерма адсорбции в координатах lgA - lgC или, соответственно lgA - lgр(рис.). В этом случае график при экстраполяции отсекает от оси ординат отрезок ОМ, равный lgk (т. е. k = 100М), а тангенс угла наклона его к оси абсцисс равен 1/n.
Рисунок – Графическое определение констант уравнения Фрёйндлиха
Адгезия. Виды адгезии
В гетерогенных системах различают межмолекулярные взаимодействия внутри фаз имежду фазами.
Притяжение друг к другу (сцепление) частиц вещества - атомов, молекул, ионов - внутри одной фазы называется когезией (от лат. cohaesus – связанный, сцепленный). Когезияобусловлена межмолекулярными силами различной природы, а во многих случаях, кроме того, водородными и химическими связями. Она является причиной существования веществ в конденсированном – твёрдом или жидком - состоянии. В газах когезия незначительна; наиболее она выражена в твёрдых телах. Когезия характеризует прочность гомогенного тела по отношению к разрыву и другим деформациям. Преодоление сил когезии при разъединении тела на части требует совершения работы, называемой работой когезииWc. При этом подразумевается, что исследуемое тело не имеет дефектов структуры, например, трещин.
В случае легкоподвижных жидкостей обратимая работа когезии равна удвоенному значению поверхностного натяжения жидкости на границе с воздухом:
.
Это обстоятельство лежит в основе различных методов определения поверхностного натяжения жидкостей, например, метода отрыва кольца, метода отрыва капли (сталагмометрического), метода продавливания сквозь жидкость пузырьков воздуха.
Сцепление приведённых в контакт разнородных твёрдых или жидких тел (фаз) называется адгезией(от лат. adhaesium - прилипание). Подобно когезии, адгезия может быть обусловлена как межмолекулярным взаимодействием, так и химическими связями, в том числе ионной и металлической. Адгезия обусловливает возникновение между двумя телами соединения определённой прочности (прилипание).
В этом смысле когезию можно рассматривать как частный случай адгезии при соприкосновении двух однородных тел. Величиной, характеризующей удельное усилие разрушения адгезионного контакта является адгезионная прочность, используемая в технике для оценки свойств клеев, лакокрасочных покрытий и др.
В фармации адгезионной прочностью могут быть охарактеризованы, например, способность пластыря, мази или горчичника удерживаться на коже, прочность таблеток, спрессованных из различных порошков, прочность связи оболочек с таблетками и т. п. Количественно адгезионная прочность может быть охарактеризована работой адгезионного отрыва Wa.
При длительном контакте разнородных тел (фаз) может происходить взаимная диффузия веществ, что приводит к размытию адгезионного шва и к увеличению адгезионной прочности.
Смачивание. Растекание
В случае одновременного контакта между твёрдой, жидкой и газовой фазами адгезия неразрывно связана со смачиванием. В качестве газовой фазы чаще всего выступает воздух.
При нанесении небольшой капли жидкости на поверхность твёрдого тела (или другой, более плотной жидкости) можно в зависимости от природы контактирующих фаз наблюдать различные явления. В одних случаях капля растекается по поверхности с образованием очень тонкого, практически плоского слоя (растекание). Растекание обычно наблюдается при соприкосновении веществ с близкой полярностью, например, вода растекается по поверхности стекла или кварца (полярные жидкость и твёрдое тело), бензол – по поверхности воска или парафина (неполярные жидкость и твёрдое тело). Но многие неполярные жидкости, такие, как нефть, минеральные масла, бензин и т. п. могут растекаться по практически любым твёрдым (металлы, дерево, стекло, пластмассы и др.) или жидким (вода) поверхностям независимо от их полярности. Такое растекание объясняется слабым межмолекулярным взаимодействием и, как следствие, низким поверхностным натяжением жидкости.
При отсутствии сродства между жидкостью и твёрдой поверхностью наблюдается полное или практически полное несмачивание, когда маленькие капли жидкости принимают почти сферическую форму. Примером полного несмачивания может служить поведение капель ртути на поверхности большинства твёрдых тел (исключая хорошо амальгамирующиеся металлы).
Кроме полного смачивания или несмачивания возможны многочисленные случаи неполного смачивания, когда капля нанесённой жидкости при установившемся равновесии принимает на поверхности твёрдого тела определённую форму (рис. 2.1).
Рис. 1. Взаимодействие сил, определяющих форму капли
На твёрдой поверхности
В такой системе имеются три различных поверхности раздела фаз: между твёрдым телом и жидкостью (т - ж), твёрдым телом и газом (т - г) и между жидкостью и газом (ж - г) с поверхностными натяжениями σтж, σтг и σжгсоответственно.
Линия, в которой пересекаются все три поверхности раздела, называется контуром смачивания. Угол между плоскостью смачиваемой поверхности и плоскостью, касательной к поверхности жидкости в одной из точек контура смачивания, называется краевым углом смачивания q.
Краевой угол всегда измеряется со стороны жидкости. На каждую точку контура смачивания действуют три силы: σтг , стремящаяся растянуть каплю по поверхности (т. е. уменьшить площадь поверхности «т - г»), σтж и σжг, стремящиеся сжать каплю (т. е. уменьшить площадь поверхностей «т - ж» и «ж – г»). Равновесное значение q связано со значением поверхностного натяжения на всех трёх межфазных поверхностях уравнением Т. Юнга:
вытекающим из общего условия равновесия трёх сил:
.
Из уравнения Юнга видно, что сosq является количественной мерой смачивания. А именно: условие сosq = 1 (q = 0о) отвечает полному смачиванию или растеканию, условие 1 >сosq> 0 (0 о <q< 90о, т. е. краевой угол острый) - неполному смачиванию. При плохом смачивании или полном несмачивании поверхности данной жидкостью краевой угол является тупым (q> 90о; cosq< 0).
Косинус краевого угла смачивания, кроме того, является и мерой работы адгезионного отрыва wa:
.
Соотношение wa и работы когезии для жидкости wк определяет величину краевого угла, а именно: при wa<wкq> 0 о причём с увеличением отношения wa / wк смачивание поверхности улучшается.
Поверхности, хорошо смачивающиеся данной жидкостью, являются по отношению к ней лиофильными (в случае воды – гидрофильными), плохо смачивающиеся – лиофобными (соответственно гидрофобными). Так как гидрофобные вещества обычно хорошо смачиваются маслами, их можно назвать также олеофильными. Гидрофильны, например, желатин, крахмал, глины, стекло; олеофильны - парафин, сажа. Кожа человека почти в одинаковой степени смачивается и водой, и маслами, что существенно при высвобождении и всасывании лекарственных веществ из линиментов, мазей, пластырей, примочек и т. п.
В процессе смачивания жидкостью твёрдой или жидкой поверхности выделяется теплота, называемая теплотой смачивания DHсм. (Правильнее эту величину следовало бы называть теплотой адгезии, так как она обусловлена только взаимодействием конденсированных фаз). В большинстве случаев теплота смачивания имеет значения от 0,4 до 40 кДж/м2. Чем больше теплота смачивания твёрдого тела данной жидкостью, тем лучше смачивание. Таким образом, теплота смачивания, как и краевой угол, может служить количественной характеристикой лиофильности твёрдых поверхностей. Для сравнения гидрофильности различных поверхностей часто используется так называемый коэффициент гидрофильности Kгидр, представляющий собой отношение теплот смачивания данной поверхности водой и бензолом:
Для гидрофильных веществ Кгидр> 1 для гидрофобных - Кгидр< 1.
Смачивание играет существенную роль во многих технологических и биологических процессах. Так, хорошее смачивание необходимо при нанесении на кожу мазей и линиментов, при стирке и крашении тканей, обработке фотографических материалов, нанесении лакокрасочных покрытий. Смачивание порошков из лекарственных веществ водой (или растворами ПАВ) является одной из важнейших характеристик в технологии лекарств. Избирательное смачивание различных минералов водой или маслами лежит в основе флотации – одного из главных способов обогащения полезных ископаемых, т. е. отделения их от вмещающей горной породы.
Лекция №3 «Адсорбция на неподвижной поверхности раздела фаз»
При адсорбции веществ на поверхности твёрдых адсорбентов изменяется химический состав поверхности адсорбента. Количественной характеристикой этого процесса является величинаудельной адсорбции Г.Удельная адсорбция – это равновесное количество поглощаемого вещества, приходящееся на единицу поверхности или массы адсорбента.
В качестве адсорбентов обычно применяют мелкоизмельченные вещества или пористые тела, что обеспечивает большую площадь поверхности раздела фаз, которую определить практически невозможно. Поэтому удельная адсорбция для твердых адсорбентов преимущественно выражается в молях поглощенного вещества на единицу массы адсорбента:
Г = (моль/г),
где n –количество адсорбата, моль; m – масса адсорбента, г.
Адсорбция газов и паров адсорбата на твердых адсорбентах – процесс, протекающий за счет сил Ван-дер-Ваальса и водородных связей. Количество поглощенного газа или пара на твёрдых поверхностях зависит от следующих факторов.
1. От свободной поверхностной энергии адсорбента.Она весьма велика у адсорбентов с аморфной структурой (активированный уголь) и у кристаллических веществ (оксиды алюминия, кремния). Адсорбент тем эффективнее, чем меньше измельчен.
2. От сродства адсорбтива к поверхности адсорбента.Полярные вещества лучше адсорбируются на полярных адсорбентах, а неполярные на неполярных. Чем больше адсорбент склонен к межмолекулярным взаимодействиям, тем интенсивнее идет адсорбция.
3. При физической адсорбции из смеси газов или паров лучше адсорбируется тот компонент, который легче сжимается, поскольку его молекулы более склонны к межмолекулярным взаимодействиям.
4. От концентрации адсорбата. Зависимость имеет сложный характер, так как с адсорбцией идет одновременно процесс десорбции. При равенстве скоростей этих процессов наступает равновесие.