Предмет теории вероятностей
Тема 1. Введение
План:
1. Предмет теории вероятностей
2. Краткие исторические сведения
Теоретические сведения
Предмет теории вероятностей
Теория вероятностей - математическая наука, изучающая закономерности в случайных явлениях.
Предметом теории вероятностей является изучение вероятностных закономерностей случайных массовых явлений. однородных
Методы, открытые в теории вероятностей, получили свое продолжение в большинстве современных наук и отраслях деятельности человека.
Например:
1. Дождь идет в течении трех дней. Можно ли быть уверенным, что он прекратится на четвертые сутки.
2. После 10 испытаний некоторого прибора можно ли быть уверенным, что он не сломается на следующем испытании?
3. Теория вероятностей может указать на характер ошибок при статистических расчетах, указать ее пределы.
4. Производится стрельба из орудия, установленного под заданным углом к горизонту. Пользуясь методами баллистики можно найти теоретическую траекторию снаряда. Эта траектория вполне определяется условиями стрельбы: начальной скоростью снаряда, углом бросания и баллистическим коэффициентом. Фактическая траектория каждого отдельного снаряда неизбежно несколько отклоняется от теоретической траектории за счет совокупного таких факторов как: ошибки изготовления снаряда, отклонение веса заряда от номинала, неоднородность структуры заряда, ошибки установки ствола в заданное положение, метеорологические условия и т. д.
Если произвести несколько выстрелов при неизменных основных условиях, мы получим не одну теоретическую траекторию, а целый пучок траекторий, образующий называемое рассеивание снарядов.
5. Одно и то же тело несколько раз взвешивается на аналитических весах; результаты повторных взвешиваний несколько отличаются друг от друга. Эти различия обусловлены влиянием многих второстепенных факторов, сопровождающих операцию взвешивания, таких как положение тела на чашке весов, случайные вибрации аппаратуры, ошибки отсчета показаний прибора и т. д.
6. Самолет совершает полет на заданной высоте; теоретически он летит горизонтально, равномерно и прямолинейно. Фактически полет сопровождается отклонениями центра массы самолета от теоретической траектории и колебаниями самолета около центра массы. Эти отклонения и колебания являются случайными и связаны с турбулентностью атмосферы; от раза к разу они не повторяются.
Совершенно очевидно, что в природе нет ни одного физического явления, в котором не присутствовали бы в той или иной мере элементы случайности. Как бы точно и подробно ни были фиксированы условия опыта, невозможно достигнуть того, чтобы при повторении опыта результаты полностью и в точности совпадали.
Случайные отклонения неизбежно сопутствуют любому закономерному явлению. Тем не менее, в ряде практических задач этими случайными элементами можно пренебречь, рассматривая вместо реального явления его упрощенную схему, "модель", и предполагая, что в данных условиях опыта явление протекает вполне определенным образом. Из бесчисленного множества факторов, влияющих на данное явление, выделяются самые главные факторы по отношению к целям эксперимента. Остальными, второстепенными факторами для данного случая, просто пренебрегают. Причем факт установления важности того или иного фактора весьма сложная и не однозначная.
Такая схема изучения явлений постоянно применяется в физике, механике, технике. При пользовании этой схемой для решения любой задачи, прежде всего выделяется основной круг учитываемых условий и выясняется, на какие параметры задачи они влияют; затем применяется тот или иной математический аппарат (например, составляются и интегрируются дифференциальные уравнения, описывающие явление); таким образом выявляется основная закономерность, свойственная данному явлению и дающая возможность предсказать результат опыта по его заданным условиям. По мере развития науки число учитываемых факторов становится все больше; явление исследуется подробнее; научный прогноз становится точнее.
Однако для решения ряда вопросов описанная схема - классическая схема так называемых "точных наук" - оказывается плохо приспособленной.
Существуют такие задачи, где интересующий нас исход опыта зависит от столь большого числа факторов, что практически невозможно зарегистрировать и учесть все эти факторы. Это задачи, в которых многочисленные второстепенные, тесно переплетающиеся между собой случайные факторы играют заметную роль, а вместе с тем число их так велико и влияние столь сложно, что применение классических методов исследования себя не оправдывает.
Например, движение планет Солнечной системы, прогноз погоды, полет самолета, пружок спортсмена в длину или его бег, встреча людей по пути на работу и многое другое.
Рассмотрим типичный пример. Некоторое техническое устройство, например система автоматического управления, решает определенную задачу в условиях, когда на систему непрерывно воздействуют случайные помехи. Наличие помех приводит к тому, что система решает задачу с некоторой ошибкой, в ряде случаев выходящей за пределы допустимой. Возникают вопросы: как часто будут появляться такие ошибки? Какие следует принять меры для того, чтобы практически исключить их возможность?
Чтобы ответить на такие вопросы, необходимо исследовать природу и структуру случайных возмущений, воздействующих на систему, изучить реакцию системы на такие возмущения, выяснить влияние конструктивных параметров системы па вид этой реакции.
Все подобные задачи, число которых в физике и технике чрезвычайно велико, требуют изучения не только основных, главных закономерностей, определяющих явление в общих чертах, но и анализа случайных возмущений и искажений, связанных с наличием второстепенных факторов и придающих исходу опыта при заданных условиях элемент неопределенности
С чисто теоретической точки зрения те факторы, которые мы условно назвали "случайными", в принципе ничем не отличаются от других, которые мы выделили в качестве "основных". Теоретически можно неограниченно повышать точность решения каждой задачи, учитывая все новые и новые группы факторов. Однако практически такая попытка одинаково подробно и тщательно проанализировать влияние решительно всех факторов, от которых зависит явление, привела бы только к тому, что решение задачи, в силу непомерной громоздкости и сложности, оказалось бы практически неосуществимым и к тому же не имело бы никакой познавательной ценности.
Практика показывает, что, наблюдая в совокупности массы однородных случайных явлений, мы обычно обнаруживаем в них вполне определенные закономерности, своего рода устойчивости, свойственные именно данным случайным массовым явлениям.
Рассмотрим еще один пример. По некоторой мишени производится один за другим ряд выстрелов; наблюдается распределение точек попадания на мишени. При ограниченном числе выстрелов точки попадания распределяются по мишени в полном беспорядке, без какой-либо пилимой закономерности. По мере увеличения числа выстрелов в расположении точек попадания начинает наблюдаться некоторая закономерность; эта закономерность проявляется тем отчетливее, чем больше выстрелов произведено. Расположение точек попадания оказывается приблизительно симметричным относительно некоторой центральной точки: в центральной области группы пробоин они расположены гуще, чем по краям; при этом густота пробоин убывает по вполне определенному закону (так называемый "нормальный закон" или "закон Гаусса", которому будет уделено большое внимание в данном курсе).
Подобные специфические, так называемые "статистические", закономерности наблюдаются всегда, когда мы имеем дело с массой однородных случайных явлений. Закономерности, проявляющиеся в этой массе, оказываются практически независимыми от индивидуальных особенностей отдельных случайных явлений, входящих в массу. Эти отдельные особенности в массе как бы взаимно погашаются, нивелируются, и средний результат массы случайных явлений оказывается практически уже не случайным.
Именно эта многократно подтвержденная опытом устойчивость случайных массовых явлений и служит базой для применения вероятностных (статистических) методов исследования.
Методы теории вероятностей по природе приспособлены только для исследования случайных массовых явлений; они не дают возможности предсказать исход отдельного случайного явления, но дают возможность предсказать средний суммарный результат массы однородных случайных явлений, предсказать средний исход массы аналогичных опытов, конкретный исход каждого из которых остается неопределенным, случайным.
Чем большее количество однородных случайных явлений участвует в задаче, тем определеннее и отчетливее проявляются присущие им специфические законы, тем с большей уверенностью и точностью можно осуществлять научный прогноз.
Во всех случаях, когда применяются вероятностные методы исследования, цель их в том, чтобы, минуя слишком сложное (и зачастую практически невозможное) изучение отдельного явления, обусловленного слишком большим количеством факторов, обратиться непосредственно к законам, управляющим массами случайных явлений. Изучение этих' законов позволяет не только осуществлять научный прогноз в своеобразной области случайных явлений, но в ряде случаев помогает целенаправленно влиять на ход случайных явлений, контролировать их, ограничивать сферу действия случайности, сужать ее влияние на практику.
Вероятностный, или статистический, метод в науке не противопоставляет себя классическому, обычному методу точных наук, а является его дополнением, позволяющим глубже анализировать явление с учетом присущих ему элементов случайности.
Обширное поле применения находит теория вероятностей в разнообразных областях военной техники: теория стрельбы и бомбометания, теория боеприпасов, теория прицелов и приборов управления огнем, аэронавигация, тактика и множество других разделов военной науки широко пользуются методами теории вероятностей и ее математическим аппаратом.
Математические законы теории вероятностей - отражение реальных статистических законов, объективно существующих в случайных массовых явлениях природы. К изучению этих явлений теория вероятностей применяет математический метод ипо своему методу является одним из разделов математики, столь же логически точным и строгим, как другие математические науки.
Современная наука теория вероятностей изучается совместно с другой наукой "математической статистикой", которая основана на закономерностях открытых в теории вероятностей. Математическая статистика наука о сборе и обработке числовых данных об объектах любой природы.
При обработке статистических данных возможны ошибки. Каковы должны быть допустимые пределы таких ошибок, что бы ими можно было пренебречь.
При изучении многих явлений приходится строить модели. Как установить надежность исследований на моделях и как соотносятся такие результаты оригиналам.
На все эти вопросы в той или иной вероятностью отвечает наука "теория вероятностей и математическая статистика"