Истоки (с чего все начиналось)
ИСКУССТВЕННЫЙ ИНТЕЛЛЕКТ: СОСТОЯНИЕ ИССЛЕДОВАНИЙ И ВЗГЛЯД В БУДУЩЕЕ
Геннадий ОСИПОВ
Президент Российской ассоциации искусственного интеллекта, постоянный член Европейского координационного комитета по искусственному интеллекту (ECCAI), д.ф.-м.н., профессор.
Что такое ИИ
Наука под названием «искусственный интеллект» входит в комплекс компьютерных наук, а создаваемые на ее основе технологии относятся к информационным технологиям.
Задачей этой науки является обеспечение разумных рассуждений и действий с помощью вычислительных систем и иных искусственных устройств.
Искусственный интеллект представляет собой экспериментальную науку. Экспериментальность искусственного интеллекта состоит в том, что создавая те или иные компьютерные представления и модели, исследователь сравнивает их поведение между собой и с примерами решения тех же задач специалистом, модифицирует их на основе этого сравнения, пытаясь добиться лучшего соответствия результатов.
Чтобы модификация программ «монотонным» образом улучшала результаты, надо иметь разумные исходные представления и модели. Их доставляют психологические исследования сознания, в частности, когнитивная психология.
Важная характеристика методов искусственного интеллекта – он имеет дело только с теми механизмами компетентности, которые носят вербальный характер (допускают символьное представление). Далеко не все механизмы, которые использует для решения задач человек, таковы.
Истоки (с чего все начиналось)
Первые исследования, относимые к искусственному интеллекту были предприняты почти сразу же после появления первых вычислительных машин.
В 1954 году американский исследователь А.Ньюэлл решил написать программу для игры в шахматы. Этой идеей он поделился с аналитиками корпорации «РЭНД» Дж. Шоу и Г.Саймоном, которые предложили Ньюэллу свою помощь. В качестве теоретической основы такой программы было решено использовать метод, предложенный в 1950 году Клодом Шенноном, основателем теории информации. Точная формализация этого метода была выполнена Аланом Тьюрингом. Он же промоделировал его вручную.
К работе была привлечена группа голландских психологов под руководством А. Де Гроота, изучавших стили игры выдающихся шахматистов. Через два года совместной работы этим коллективом был создан язык программирования ИПЛ1 - по-видимому первый символьный язык обработки списков. Вскоре была написана и первая программа, которую можно отнести к достижениям в области искусственного интеллекта. Эта была программа "Логик-Теоретик" (1956 г.), предназначенная для автоматического доказательства теорем в исчислении высказываний.
Собственно же программа для игры в шахматы, NSS, была завершена в 1957 г. В основе ее работы лежали так называемые эвристики (правила, которые позволяют сделать выбор при отсутствии точных теоретических оснований) и описания целей. Управляющий алгоритм пытался уменьшить различия между оценками текущей ситуации и оценками цели или одной из подцелей.
В 1960 г. той же группой, на основе принципов, использованных в NSS, была написана программа, которую ее создатели назвали GPS (General Problem Solver )- универсальный решатель задач. GPS могла справляться с рядом головоломок , вычислять неопределенные интегралы, решать некоторые другие задачи. Эти результаты привлекли внимание специалистов в области вычислений. Появились программы автоматического доказательства теорем из планиметрии и решения алгебраических задач (сформулированных на английском языке).
Джона Маккарти из Стэнфорда заинтересовали математические основы этих результатов и вообще символьных вычислений. В результате в 1963 г. им был разработан язык ЛИСП, основу которого составило использование единого спискового представления для программ и данных, применение выражений для определения функций, скобочный синтаксис.
В это же время в СССР, в основном, в Московском университете и Академии наук был выполнен ряд пионерских исследований, возглавленных Вениамином Пушкиным и Дмитрием Поспеловым, целью которых было выяснение, как же, в действительности, человек решает переборные задачи?
В качестве полигона для этих исследований были выбраны различные математические игры, в частности, игра "15" и игра "5",а в качестве инструментального метода исследования - регистрация движения глаз или гностическая динамика. Основными методами регистрации движения глаз были электроокулограмма и использование присоски, помещаемой на роговицу.
Цель каждой такой игры заключается в переходе от некоторой исходной ситуации к конечной. Переходы осуществляются путем последовательного перемещения фишек по горизонталям и вертикалям на свободное поле.
Возьмем, например, игру "5", исходная и конечная ситуации в которой выглядят, соответственно, следующим образом:
и
Оптимальным образом задача решается за шесть ходов, которые соответствуют перемещениям фишек 1, 4, 5, 3, 2, 1. Решение было бы намного сложнее, если бы на первом ходу двигалась бы, например, фишка 2, или на втором ходу - фишка 3. Такая модель игры приводит, вообще говоря, к полному перебору или "лабиринту" вариантов и составляет основу лабиринтной гипотезы мышления.
C другой стороны, анализ экспериментальных данных позволил вычленить два вида изменений параметров гностической динамики в процессе обучения решению задачи. К числу этих параметров относятся время решения задачи, количество осмотров условий, количество осмотров цели, общее количество осмотров, плотность осмотра и отношение числа осмотров условий к числу осмотров цели. У другой же группы испытуемых таких изменений не происходит.
Анализ и других экспериментальных данных подтвердил существование некоторых общих тенденций в динамике обучения решению задач.
Сопоставление экспериментальных данных свидетельствует также о том, что соотнесение различных ситуаций связано между собой посредством такого когнитивного компонента, как анализ цели. Эти соображения и составляют основу модельной гипотезы мышления и привели к появлению в 1964 г. языка (и метода) ситуационного управления.
К исследованиям в области искусственного интеллекта стали проявлять интерес и логики. В том же 1964 году была опубликована работа ленинградского логика Сергея Маслова "Обратный метод установления выводимости в классическом исчислении предикатов", в которой впервые предлагался метод автоматического поиска доказательства теорем в исчислении предикатов.
В 1965 г. в США появляется работа Дж.А.Робинсона, посвященная несколько иному методу автоматического поиска доказательства теорем в исчислении предикатов первого порядка. Этот метод был назван методом резолюций и послужил отправной точкой для создания нового языка программирования со встроенной процедурой логического вывода - языка Пролог в 1971.
В 1966 году в СССР Валентином Турчиным был разработан язык рекурсивных функций Рефал, предназначенный для описания языков и разных видов их обработки. Хотя он и был задуман как алгоритмический метаязык, но для пользователя это был, подобно ЛИСПу и Прологу, язык обработки символьной информации.
В конце 60-х годов появились первые игровые программы, системы для элементарного анализа текста и решения некоторых математических задач (геометрии, интегрального исчисления). В возникавших при этом сложных переборных проблемах количество перебираемых вариантов резко снижалось применением всевозможных эвристик и «здравого смысла». Такой подход стали называть эвристическим программированием. Дальнейшее развитие эвристического программирования шло по пути усложнения алгоритмов и улучшения эвристик. Однако вскоре стало ясно, что существует некоторый предел, за которым никакие улучшения эвристик и усложнения алгоритма не повысят качества работы системы и, главное, не расширят ее возможностей. Программа, которая играет в шахматы, никогда не будет играть в шашки или карточные игры.
Постепенно исследователи стали понимать, что всем ранее созданным программам недостает самого важного - знаний в соответствующей области. Специалисты, решая задачи, достигают высоких результатов, благодаря своим знаниям и опыту; если программы будут обращаться к знаниям и применять их, то они тоже достигнут высокого качества работы.
Это понимание, возникшее в начале 70-х годов, по существу, означало качественный скачок в работах по искусственному интеллекту.
Основополагающие соображения на этот счет высказал в 1977 году на 5-й Объединенной конференции по искусственному интеллекту американский ученый Э.Фейгенбаум.
Уже к середине 70-х годов появляются первые прикладные интеллектуальные системы, использующие различные способы представления знаний для решения задач - экспертные системы. Одной из первых была экспертная система DENDRAL, разработанная в Стэнфордском университете и предназначенная для порождения формул химических соединений на основе спектрального анализа. Система MYCIN предназначена для диагностики и лечения инфекционных заболеваний крови. Система PROSPECTOR прогнозирует залежи полезных ископаемых. Имеются сведения о том, что с ее помощью были открыты залежи молибдена, ценность которых превосходит 100 миллионов долларов. Система оценки качества воды, реализованная на основе российской технологии SIMER + MIR несколько лет назад выяснила причины превышения предельно допустимых концентраций загрязняющих веществ в Москве-реке в районе Серебряного Бора. Система CASNET предназначена для диагностики и выбора стратегии лечения глаукомы и т.д.
В настоящее время разработка и реализация экспертных систем выделилась в самостоятельную инженерную область. Научные же исследования сосредоточены в ряде направлений.