Понятие симметрии и асимметрии в биологии.

На явление симметрии в живой природе обратили внимание ещё в Древней Греции пифагорейцы (5 в. до н. э.) в связи с развитием ими учения о гармонии. В 19 в. появились единичные работы, посвященные симметрии растений (французские учёные О. П. Декандоль, О. Браво), животных (немецкий — Э. Геккель), биогенных молекул (французские — А. Вешан, Л. Пастер и др.). В 20 в. биообъекты изучали с позиций общей теории симметрии (советские учёные Ю. В. Вульф, В. Н. Беклемишев, Б. К. Вайнштейн, голландский физикохимик Ф. М. Егер, английский кристаллографы во главе с Дж. Берналом) и учения о правизне и левизне (советские учёные В. И. Вернадский, В. В. Алпатов, Г. Ф. Гаузе и др.; немецкий учёный В. Людвиг). Эти работы привели к выделению в 1961 особого направления в учении о симметрии — биосимметрики.

Наиболее интенсивно изучалась структурная симметрия биообъектов. Исследование симметрии биоструктур — молекулярных и надмолекулярных — с позиций структурной симметрии позволяет заранее выявить возможные для них виды симметрии, а тем самым число и вид возможных модификаций, строго описывать внешнюю форму и внутреннее строение любых пространственных биообъектов. Это привело к широкому использованию представлений структурной симметрии в зоологии, ботанике, молекулярной биологии. Структурная симметрия проявляется прежде всего в виде того или иного закономерного повторения. В классической теории структурной симметрии, развитой немецким учёным И. Ф. Гесселем, Е. С. Федоровым и другими, вид симметрии объекта может быть описан совокупностью элементов его симметрии, т. е. таких геометрических элементов (точек, линий, плоскостей), относительно которых упорядочены одинаковые части объекта. Например, вид симметрии цветка флокса — одна ось 5-го порядка, проходящая через центр цветка; производимые посредством её операции — 5 поворотов (на 72, 144, 216, 288 и 360°), при каждом из которых цветок совпадает с самим собой. Вид симметрии фигуры бабочки — одна плоскость, делящая её на 2 половины — левую и правую; производимая посредством плоскости операция — зеркальное отражение, «делающее» левую половинку правой, правую — левой, а фигуру бабочки совмещающей с самой собой. Вид симметрии радиолярии Lithocubus geometricus, помимо осей вращения и плоскостей отражения содержит ещё и центр симметрии. Любая проведённая через такую единственную точку внутри радиолярии прямая по обе стороны от неё и на равных расстояниях встречает одинаковые (соответственные) точки фигуры. Операции, производимые посредством центра симметрии, — отражения в точке, после которых фигура радиолярии также совмещается сама с собой.

В живой природе (как и в неживой) из-за различных ограничений обычно встречается значительно меньшее число видов симметрии, чем возможно теоретически. Например, на низших этапах развития живой природы встречаются представители всех классов точечной симметрии — вплоть до организмов, характеризующихся симметрией правильных многогранников и шара. Однако на более высоких ступенях эволюции встречаются растения и животные в основном т. н. аксиальной (вида n) и актиноморфной (вида n (m) симметрии (в обоих случаях n может принимать значения от 1 до ∞). Биообъекты с аксиальной симметрией (лист плюща, медуза Aurelia insulinda, цветок плюща) характеризуются лишь осью симметрии порядка n. При повороте этих фигур вокруг оси симметрии равные части каждого из них совпадут друг с другом соответственно 1, 4, 5 раз (оси 1, 4, 5-го порядка). Лист плюща асимметричен. Биообъекты актиноморфной симметрии (бабочка; лист кислицы; симметрии соответственно 1×m, 3×m. Бабочке свойственна двусторонняя, или билатеральная, симметрия) характеризуются одной осью порядка n и пересекающимися по этой оси плоскостями m. В живой природе наиболее распространены симметрия вида n = 1 и 1×m = m, называется соответственно асимметрией и двусторонней, или билатеральной, симметрией.

Асимметрия характерна для листьев большинства видов растений, двусторонняя симметрия — до известной степени для внешней формы тела человека, позвоночных животных и многих беспозвоночных. У подвижных организмов такая симметрия, по-видимому, связана с различиями их движения вверх-вниз и вперёд-назад, тогда как их движения направо-налево одинаковы. Нарушение у них билатеральной симметрии неизбежно привело бы к торможению движения одной из сторон и превращению поступательного движения в круговое. В 50—70-х гг. 20 в. интенсивному изучению (прежде всего в СССР) подверглись т. н. диссимметрические биообъекты (диссимметрические D- и L-биообъекты: 1. цветки анютиных глазок; 2. раковины прудовика; 3. молекулы винной кислоты; 4. листья бегонии.). Последние могут существовать по крайней мере в двух модификациях — в форме оригинала и его зеркального отражения (антипода). При этом одна из этих форм (неважно какая) называется правой или D (от лат. dextro), другая — левой или L (от лат. laevo). При изучении формы и строения D- и L-биообъектов была развита теория диссимметризующих факторов, доказывающая возможность для любого D- или L-объекта двух и более (до бесконечного числа) модификаций (Лист липы, иллюстрирующий возможность существования диссимметрических объектов более чем в двух модификациях. Для листа липы диссфакторы — это 4 морфологических признака: преимущественные ширина и длина, асимметричные жилкование и загиб главной жилки. Так как каждый из диссфакторов может проявляться двояко — в (+) или (-) —формах — и соответственно приводить к D- или L-мoдификациям, то число возможных модификаций будет 24 = 16, а не две); одновременно в ней содержались и формулы для определения числа и вида последних. Эта теория привела к открытию т. н. биологической изомерии (разных биообъектов одного состава.

При изучении встречаемости биообъектов было установлено, что в одних случаях преобладают D-, в других L-формы, в третьих они представлены одинаково часто. Бешаном и Пастером (40-е гг. 19 в.), а в 30-х гг. 20 в. советским учёным Г. Ф. Гаузе и другими было показано, что клетки организмов построены только или преимущественно из L-amинокислот, L-белков, D-дезоксирибонуклеиновых кислот, D-сахаров, L-алкалоидов, D- и L-терпенов и т. д. Столь фундаментальная и характерная черта живых клеток, названная Пастером диссимметрией протоплазмы, обеспечивает клетке, как было установлено в 20 в., более активный обмен веществ и поддерживается посредством сложных биологических и физико-химических механизмов, возникших в процессе эволюции. Советский учёный В. В. Алпатов в 1952 на 204 видах сосудистых растений установил, что 93,2% видов растений относятся к типу с L-, 1,5% — с D-ходом винтообразных утолщений стенок сосудов, 5,3% видов — к типу рацемическому (число D-сосудов примерно равно числу L-сосудов).

При изучении D- и L-биообъектов было установлено, что равноправие между D-и L-формами в ряде случаев нарушено из-за различия их физиологических, биохимических и др. свойств. Подобная особенность живой природы была названа диссимметрией жизни. Так, возбуждающее влияние L-amинокислот на движение плазмы в растительных клетках в десятки и сотни раз превосходит такое же действие их D-форм. Многие антибиотики (пенициллин, грамицидин и др.), содержащие D-amинокислоты, обладают большей бактерицидностью, чем их формы c L-amинокислотами. Чаще встречающиеся винтообразные L-kopнеплоды сахарной свёклы на 8—44% (в зависимости от сорта) тяжелее и содержат на 0,5—1% больше сахара, чем D-kopнеплоды.

Изучение наследования признаков у D- и L-форм показало, что их правизна или левизна может быть наследственной, ненаследственной или имеет характер длительной модификации. Это означает, что по крайней мере в ряде случаев правизну-левизну организмов и их частей можно изменить действием мутагенных или немутагенных химических соединений. В частности, D-штаммы (по морфологии колоний) микроорганизма Bacillus mycoides при выращивании их на агаре с D-сахарозой, L-днгитонином, D-винной кислотой можно превратить в L-штаммы, а L-штаммы можно превратить в D-штаммы, выращивая их на агаре с L-винной кислотой и D-аминокислотами. В природе взаимопревращения D- и L-форм могут происходить и без вмешательства человека. При этом смена видов симметрии в эволюции происходила не только у диссимметрических организмов. В результате возникли многочисленные эволюционные ряды симметрии, специфичные для тех или иных ветвей древа жизни.

Симметрия в мире растений:

Специфика строения растений и животных определяется особенностями среды обитания, к которой они приспосабливаются, особенностями их образа жизни. У любого дерева есть основание и вершина, "верх" и "низ", выполняющие разные функции. Значимость различия верхней и нижней частей, а также направление силы тяжести определяют вертикальную ориентацию поворотной оси "древесного конуса" и плоскостей симметрии.

Для листьев характерна зеркальная симметрия. Эта же симметрия встречается и у цветов, однако у них зеркальная симметрия чаще выступает в сочетании с поворотной симметрией. Нередки случаи и переносной симметрии (веточки акации, рябины). Интересно, что в цветочном мире наиболее распространена поворотная симметрия 5-го порядка, которая принципиально невозможна в периодических структурах неживой природы.

Соты - настоящий конструкторский шедевр. Они состоят из ряда шестигранных ячеек.

Это самая плотная упаковка, позволяющая наивыгоднейшим образом разместить в ячейке личинку и при максимально возможном объеме наиболее экономно использовать строительный материал-воск.

Листья на стебле расположены не по прямой, а окружают ветку по спирали. Сумма всех предыдущих шагов спирали, начиная с вершины, равна величине последующего шага

А+В=С, В+С=Д и т. д.

Расположение семянок в головке подсолнуха или листьев в побегах вьющихся растений соответствует логарифмической спирали

Симметрия в мире насекомых, рыб, птиц, животных:

Типы симметрии у животных:

· центральная

· осевая

· радиальная

· билатеральная

· двулучевая

поступательная (метамерия)

· поступательно-вращательная

Ось симметрии. Ось симметрии - это ось вращения. В этом случае у животных, как правило, отсутствует центр симметрии. Тогда вращение может происходить только вокруг оси. При этом ось чаще всего имеет разнокачественные полюса. Например, у кишечнополостных, гидры или актинии, на одном полюсе расположен рот, на другом - подошва, которой эти неподвижные животные прикреплены к субстрату. Ось симметрии может совпадать морфологически с переднезадней осью тела.

Плоскость симметрии. Плоскость симметрии - это плоскость, проходящая через ось симметрии, совпадающая с ней и рассекающая тело на две зеркальные половины. Эти половины, расположенные друг против друга, называют антимерами (anti – против; mer – часть). Например, у гидры плоскость симметрии должна пройти через ротовое отверстие и через подошву. Антимеры противоположных половин должны иметь равное число щупалец, расположенных вокруг рта гидры. У гидры можно провести несколько плоскостей симметрии, число которых будет кратно числу щупалец. У актиний с очень большим числом щупалец можно провести много плоскостей симметрии. У медузы с четырьмя щупальцами на колоколе число плоскостей симметрии будет ограничено числом, кратным четырём. У гребневиков только две плоскости симметрии - глоточная и щупальцевая. Наконец, у двусторонне-симметричных организмов только одна плоскость и только две зеркальные антимеры – соответственно правая и левая стороны животного.

Типы симметрии. Известны всего два основных типа симметрии – вращательная и поступательная. Кроме того, встречается модификация из совмещения этих двух основных типов симметрии – вращательно-поступательная симметрия.

Вращательная симметрия. Любой организм обладает вращательной симметрией. Для вращательной симметрии существенным характерным элементом являются антимеры. Важно знать, при повороте на какой градус контуры тела совпадут с исходным положением. Минимальный градус совпадения контура имеет шар, вращающийся около центра симметрии. Максимальный градус поворота 360 , когда при повороте на эту величину контуры тела совпадут.

Если тело вращается вокруг центра симметрии, то через центр симметрии можно провести множество осей и плоскостей симметрии. Если тело вращается вокруг одной гетерополярной оси, то через эту ось можно провести столько плоскостей, сколько антимер имеет данное тело. В зависимости от этого условия говорят о вращательной симметрии определённого порядка. Например, у шестилучевых кораллов будет вращательная симметрия шестого порядка. У гребневиков две плоскости симметрии, и они имеют симметрию второго порядка. Симметрию гребневиков также называют двулучевой. Наконец, если организм имеет только одну плоскость симметрии и соответственно две антимеры, то такую симметрию называют двусторонней или билатеральной. Лучеобразно отходят тонкие иглы. Это помогает простейшим «парить» в толще воды. Шарообразны и другие представители простейших – лучевики (радиолярии) и солнечники с лучевидными отростками-псевдоподиями.

Поступательная симметрия. Для поступательной симметрии характерным элементом являются метамеры (meta – один за другим; mer – часть). В этом случае части тела расположены не зеркально друг против друга, а последовательно друг за другом вдоль главной оси тела.

Метамерия – одна из форм поступательной симметрии. Она особенно ярко выражена у кольчатых червей, длинное тело которых состоит из большого числа почти одинаковых сегментов. Этот случай сегментации называют гомономной. У членистоногих животных число сегментов может быть относительно небольшим, но каждый сегмент несколько отличается от соседних или формой, или придатками (грудные сегменты с ногами или крыльями, брюшные сегменты). Такую сегментацию называют гетерономной.

Вращательно-поступательная симметрия. Этот тип симметрии имеет ограниченное распространение в животном мире. Эта симметрия характерна тем, что при повороте на определённый угол часть тела немного проступает вперед и её размеры каждый следующий логарифмически увеличивает на определённую величину. Таким образом, происходит совмещение актов вращения и поступательного движения. Примером могут служить спиральные камерные раковины фораминифер, а также спиральные камерные раковины некоторых головоногих моллюсков (современный наутилус или ископаемые раковины аммонитов. С некоторым условием к этой группе можно отнести также и некамерные спиральные раковины брюхоногих моллюсков.

Рассмотрим ещё один тип симметрии, который встречается в животном мире. Это винтовая или спиральная симметрия. Винтовая симметрия есть симметрия относительно комбинации двух преобразований - поворота и переноса вдоль оси поворота, т. е. идёт перемещение вдоль оси винта и вокруг оси винта. Встречаются левые и правые винты. Примерами природных винтов являются: бивень нарвала (небольшого китообразного, обитающего в северных морях) – левый винт; раковина улитки – правый винт; рога памирского барана – энантиоморфы (один рог закручен по левой, а другой по правой спирали). Спиральная симметрия не бывает идеальной, например, раковина у моллюсков сужается или расширяется на конце.

Исключительно важную роль в мире живой природы играют молекулы дезоксирибонуклеиновой кислоты – ДНК, являющейся носителем наследственной информации в живом организме. Молекула ДНК имеет структуру двойной правой спирали, открытой американскими учёными Уотсоном и Криком. За её открытие они были удостоены Нобелевской премии. Двойная спираль молекулы ДНК есть главный природный винт.

Отметим, билатеральную симметрию человеческого тела (речь идёт о внешнем облике и строении скелета). Эта симметрия всегда являлась и является основным источником нашего эстетического восхищения хорошо сложенным человеческим телом.

Наша собственная зеркальная симметрия очень удобна для нас, она позволяет нам двигаться прямолинейно и с одинаковой лёгкостью поворачиваться вправо и влево. Столь же удобна зеркальная симметрия для птиц, рыб и других активно движущихся существ.

3. Золотое сечение – закон проявления гармонии природы.

Одним из наиболее ярких проявлений гармонии в природе является закон пропорциональной связи целого и составляющих его частей, получивший название «золотое сечение». Золотое сечение — это деление целого на две неравные части так, чтобы большая часть относилась к меньшей, как целое к большей части.

Пифагор был первым, кто обратил внимание на это особое, «гармоническое» деление любого отрезка, названное впоследствии золотым сечением. В 1509 г., т. е. примерно через две тысячи лет после Пифагора, итальянец Лука Пачоли (1445—1509) опубликовал книгу «О божественной пропорции», рисунки к которой выполнил знаменитый друг Пачоли Леонардо да Винчи, кому и принадлежит сам термин «золотое сечение».

Классический пример золотого сечения, дающий представление о нем, — это деление отрезка в среднепропор-циональном отношении:

Приближенные корни этого уравнения — числа Ф = 1,61803398875 и

–Ф-1 = -0,61803398875, которые не менее замечательны, чем числа (пи) и е. О них после Пифагора писали Платон, Поликлет, Евклид, Витрувий и многие другие. Золотым сечением кроме Леонардо да Винчи интересовались многие художники, скульпторы, архитекторы, многие деятели науки и искусства. Вызвано это тем, что везде, где появляется число Ф, живые формы и произведения искусства приятны для глаз, отличаются явной гармонией и красотой.

Для построения правильных симметричных многогранников: куба, октаэдра, тетраэдра, икосаэдра, додекаэдра нужно использовать золотую пропорцию, так как диагонали их образуют пентаграмму. Золотое сечение связано с пространственным отношением природных объек­тов, человека, архитектурных сооружений, музыкальной гармонии, в геометрических фигурах, имеющих ось пя­того порядка, — их имеют многие цветы, морские звез­ды, ежи, вирусы.

У человека золотое сечение — это отношение его роста к расстоянию от пупка до подошв ног: при рождении оно равно 2, а к 21 годам — 1,625, у женщин — 1,6. Многие женщины интуитивно пытаются приблизить это отноше­ние к золотой пропорции, надевая туфли на каблуках.

Золотое сечение владело умами многих ученых и вы­дающихся мыслителей прошлого, продолжает волновать и сейчас — не ради математических свойств, а потому, что оно неотделимо от целостности объектов искусства и в то же время обнаруживает себя как признак структур­ного единства объектов природы.

Феномен золотого сечения — одно из ярких, давно уже замеченных человеком проявлений гармонии при­роды. Он рассматривается в общей картине историчес­кого становления архитектуры, обнаруживается в фор­мах живой природы, в области музыкальной гармонии. Он рассматривается также и как объективная характери­стика искусства и как явление в области восприятия. Се­годня мы не можем с абсолютной достоверностью опре­делить, когда и кем понятие золотого сечения было выде­лено в человеческом знании из интуитивной и опытной категории. В эпоху Ренессанса среднепропорциональное отношение именовали «божественной пропорцией». Лео­нардо да Винчи дает ему имя «золотое сечение», которое живет и поныне.

Уже в наши дни физиологи обнаружили, что волны электрической активности мозга также характеризуются золотым сечением. И, наконец, совсем недавно выдвину­та идея-гипотеза, что золотое сечение является основой существования любых самоорганизующихся систем.

Правило золотого сечения показывает, что большее относится к меньшему, как целое относится к большему. Если большее — это человечество, а меньшее — окружа­ющая его природа, то по тому, как человечество отно­сится к тому, что ему по силам, что оно может изменить, так и весь Космос, вся Вселенная относится к человече­ству (как целое — к большему). Человечество на протя­жении всей своей истории действует в корыстных инте­ресах, перемалывая и переламывая, превращая в мусор­ную свалку все вокруг себя. Так же к человечеству будет относиться и Космос и Вселенная.

О золотом сечении написано много трактатов. В пос­леднее время оно все больше привлекает внимание уче­ных: используется в технике, архитектуре, обнаружива­ется в ритмах мозга, астрономии. Доказаны фундамен­тальность и его исключительность.

За всем этим многообразием достаточно четко видно отражение особенностей самого общего явления, которому подвергается все телесное в мире, начиная от эле­ментарных частиц и кончая галактиками, — это движе­ние. Гармония может быть расшифрована на ее собствен­ном языке, отображенном фундаментальными принци­пами естествознания.

Интуиция — нередко источник плодотворной науч­ной гипотезы. Современная астрономия поднимает зна­чение человека. Человек — это не пылинка бессмыслен­но движущегося существа, а микрокосмос, т. е. явление, связанное с мирозданием. Между микрокосмосом — че­ловеком — и космосом пропасть начинает исчезать. На­блюдая спектры звезд, галактик, близких и удаленных на миллиарды световых лет, радиоастрономы обнаружили, что наша Вселенная однородна не только тем, что веще­ство в ней распределено в среднем равномерно, но и тем, что возникла она сразу, одновременно и как одно целое из одной точки начала, так же, как приходит в жизнь человек.

Итак, современная космология сделала решительный шаг к космоцентризму, убедительно показав, что весь строительный материал мироздания, представляющий космическое пространство, был стянут в точку начала. Закон его становления был заключен в этой точке. Так возникает все живое, любой живой объект бытия. Дру­гих видов жизни природа пока не знает. Все живое име­ет своим началом сгусток материи. Существование точ­ки начала становления объекта бытия — такова причина целостности, потому что природа не знает неструктур­ных единиц. Вне связи частей в целое структуры не представимы. Закон связи частей в целое — закон гармонии — и есть закон развития свернутой точки начала. И он один.

Высокая эстетичность золотого сечения заключается в том, что в нем отражается воспринимаемая на образно-эмоциональном уровне основа бытия телесного состав­ляющего целостной Природы.

Выводы

1. Золотая пропорция Пифагора оказалась связанной с фундаментальными проблемами науки. Сквозь годы и века она привела не только к структурной, но и к геометрической и динамической симметриям.

2. На основе биологических законов сохранения, раз­нообразных вариантов симметрии законов живой природы относительно тех или иных преобразований рано или поздно удастся проникнуть в сущность жи­вого, объяснить ход эволюции, ее вершины и тупи­ки, предсказать неизвестные сейчас ветви — теоре­тически возможные и действительные числа типов, классов, семейств организмов, т. е. можно поставить вопрос о не единственности той картины мира, ко­торую мы знаем.

3. Золотое сечение неотделимо от ценностей искусства, так как обнаруживает себя как признак структурного единства объектов природы.

4. Раскрытие объективных законов гармонии формиру­ет прочный фундамент мировоззренческого и про­фессионального отношения к творчеству, к жизни. Вспомним слова Л. Фейербаха: «То, что человек на­зывает целесообразностью природы и как таковую по­стигает, есть в действительности не что иное, как един­ство мира, гармония причин и следствий, вообще та взаимная связь, в которой все в природе существует и действует».

Изучение и постижение законов гармонии способны направить творческую деятельность человека не в русло формотворчества, а в русло создания нового, созвучного основным объективным законам восприятия, которым отображены законы гармонии в природе.

ЗАКЛЮЧЕНИЕ

Таким образом, представления о симметрии и ее следствиях в разных областях деятельности (искусстве, науке, технике, обыденной жизни) использовались человечеством с древнейших времен.

Симметрия – в широком и узком смысле является той идеей, которой человек на протяжении веков пытался постичь и создать порядок во всех физических явлениях. И нашу Вселенную со всеми ее сложностями, видимо, построят в будущем согласно понятиям о симметрии

Симметрия - понятие, отражающее существующий в природе порядок, пропорциональность и соразмерность между элементами какой-либо системы или объекта природы, упорядоченность, равновесие системы, устойчивость, т. е. если хотите, некий элемент гармонии. Асимметрия - понятие, противоположное симметрии, отражающее разупорядочение системы, нарушение равновесия и это связано с изменением, развитием системы.

Помимо симметрии существует также понятие ассиметрии

Асимметрия - понятие, противоположное симметрии, отражающее разупорядочение системы, нарушение равновесия и это связано с изменением, развитием системы. Таким образом и из соображений симметрии-асимметрии мы приходим к выводу, что развивающаяся динамическая система должна быть неравновесной и несимметричной. В ряде случаев симметрия является достаточно очевидным фактом. Например, для определенных геометрических фигур нетрудно увидеть эту симметрию и показать ее путем соответствующих преобразований, в результате которых фигура не изменит своего вида

Симметрия лежит в основе вещей и явлений, выражая нечто общее, свойственное разным объектам, тогда как асимметрия связана с индивидуальным воплощением этого общего в конкретном объекте.

С симметрией человек встречаемся везде – в природе, технике, искусстве, науке. Понятие симметрии проходит через всю многовековую историю человеческого творчества. Принципы симметрии играют важную роль в физике и математике, химии и биологии, технике и архитектуре, живописи и скульптуре, поэзии и музыке. Законы природы, управляющие неисчерпаемой в своём многообразии картиной явлений, в свою очередь, подчиняются принципам симметрии.

Существует множество видов симметрии как в растительном, так и в животном мире, но при всем многообразии живых организмов, принцип симметрии действует всегда, и этот факт еще раз подчеркивает гармоничность нашего мира

Симметрия - асимметрия играют важную роль в математике, логике, философии, искусстве, биологии, физике, химии и других науках, которые имеют дело с системами, а также исследованиями в области общей методологии.

Список литературы

1. Вигнер Е. Этюды о симметрии. – М., 1971.

2. Горбачев В. В. Концепции современного естествознания. В 2 ч.:Учебное пособие. М.: Издательство МГУП, 2000.

3. Жёлудев И. С. симметрия и её приложения. –М.: Энергоатомиздат, 1983г.

4. Сонин А. С. Постижение совершенства: симметрия, асимметрия, диссимметрия, антисимметрия. – М.: ЗНАНИЕ, 1987г.

5. Урманцев Ю. А. Симметрия природы и природа симметрии — М.: Мысль, 1974г.6. Хорошавина С. Г. концепции современного естествознания – Ростов-на-Дону: Феникс, 2000 Источник: http://referat.niv.ru/view/referat-biology/60/59843.htm

Наши рекомендации