Основные элементы рабочей станции
Системная плата.
Как и в персональном компьютере, все функциональные элементы рабочей станции размещаются на одной плате или подсоединяются к ней. Такая плата называется системной или материнской платой (motherboard). В частности на системной плате размещается процессор, микросхемы поддержки, контролеры устройств, микросхемы памяти. Связывающим элементом системной платы является шина данных – набор печатных проводников и усилителей для передачи электрических сигналов между функциональными элементами системной платы, а также остальными устройствами рабочей станции. Внешние по отношению к системной плате устройства подключаются к ней с помощью специальных разъемов. Эти разъемы называются слотами. Они размещаются непосредственно на самой системной плате.
Процессоры первых персональных компьютеров были восьмиразрядными, то есть они обрабатывали и могли передавать данные только по восемь разрядов. Соответственно и шина данных была восьмиразрядной. Позже появились шестнадцатиразрядная процессоры и шина данных была замененная на шестнадцати разрядная. Начиная с 486 процессора началось использование 32-разрядной системной шины, которое обеспечило максимальную скорость передачи данных между разными устройствами компьютера.
К наипростейшим типам архитектуры шины данных относятся: ISA, EISA, и PCI.
ISA (Industry Standard Architecture) – архитектура, которая используется в компьютерах IВМ РС, ХТ, АО и совместимых с ними. Это одна из первых стандартных шин, которая используется и в настоящее время.
EISA (Extended Industry Standard Architecture) является 32-разрядной шиной, совместимой из ISA.
РСI (Peripheral Component Interconnect) – это 32-разрядная локальная шина, которая используется в большинстве современных компьютеров. Архитектура РСI удовлетворяет востребованиям технологии Plug and Play, которая позволяет настраивать конфигурацию
компьютера без вмешательства пользователя.
Центральный процессор.
В состав современного компьютера может входить несколько разных процессоров, каждый из которых ориентирован на выполнение определенного набора функций. Например, процессор ввода-вывода ориентирован на выполнение операций, связанных с обменом данными с внешними устройствами. Арифметический процессор имеет набор специальных команд, которые повышают эффективность выполнения арифметических операций, в частности операций с плавающей запятой. Среди этих процессоров особенное место занимает так называемый центральный процессор, который руководит работой всего компьютера в целом и, как правило, выполняет основной объем вычислительных операций.
Самым простым, хотя и достаточно приблизительным показателем быстродействия процессора является тактовая частота. Тактовая частота процессора измеряется в мегагерцах (Мгц). В настоящее время достаточно распространенной является тактовая частота в 200 – 266 Мгц.
Производительность рабочей станции зависит от быстродействия не только центрального процессора, но и других устройств. Вторыми словами, если быстродействие процессора высоко, а жесткого диска или (но) видеосистемы – низкая, то быстродействующие устройства будут простаивать в ожидании информации от более медленных устройств.
Память.
В современных рабочих станциях, как правило, используется несколько видов памяти, которая отличается по функциональному назначению, объему и быстродействию. Быстродействие памяти и свой размер существенно влияют на производительность рабочей станции. В первую очередь это касается оперативной памяти, так называемой ОЗУ (от российского “оперативное запоминающее устройство”). Оперативная память предназначена для сохранения информации, с которой непосредственно работает процессор во время выполнения программ. В оперативной памяти сохраняется основная часть (ядро) операционной системы, выполняемые в данный момент программы и данные к ним.
Современное программное обеспечение часто использует виртуальную память, - если выясняется, что доступной оперативной памяти недостаточно, блоки кода и данных приложениях сохраняются во временных файлах на жестком диске компьютера. Потом, если необходимо, сохраненные на жестком диске команды, будут замещать в оперативной памяти некоторые команды, которые в данный момент не используются.
Емкость оперативной памяти измеряется в мегабайтах (Мбайт). В одном мегабайте помещается 1048576 байт.
Конструктивно оперативная память в настоящее время выполняется в виде модулей. Типы модулей оперативной памяти: SIMM (небольшая плата с микросхемами на 30 или 72 контакта, которая вставляется на системной плате в слоты оперативной памяти), и DIMM (то же, но на 168 контактов).
Модуль DIMM значительно преобладают модули SIMM по объему и быстродействию.
По способу сохранения информации микросхемы оперативной памяти разделяются на динамических и статических. Динамическая память с произвольным доступом (DRAM) – это самая дешевая и самая простая в изготовлении микросхема памяти. Как правило, время доступа у нее составляет 70-50 нс.
Статическая память с произвольным доступом (SRAM) – это микросхемы статической памяти. Этот вид памяти значительно быстрее, чем динамическая, но и более дорогой. Как правило, время доступа здесь составляет 5-10 нс и меньше.
Видеопамять с произвольным доступом (VRAM). Это специализированные модули памяти типа SRAM, которые используются на платах видеоконтроллеров для обработки цифровых графических данных.
Постоянное запоминающее устройство (ПЗУ – от российского, ROM – от английского “read only memory, то есть – память только для чтения). Как пример, в компьютерах ПЗУ используется для хранения базовой системы ввода-вывода (BIOS), которая является набором программ для обеспечения взаимодействия аппаратных средств и операционной системы с внешними устройствами.
Жесткие диски.
Емкость современных жестких дисков измеряется в гигабайтах (Гбайт). Одним из основных параметров жесткого диску, что влияют на его быстродействие, есть время доступа к данным, который измеряется в миллисекундах. Вторым, не менее важным параметром, есть объем информации, которая передается в единицу времени.
Сетевой адаптер.
Для подключения компьютеров к среде передачи используются специальные устройства – сетевые адаптеры. Основными элементами сетевого адаптера является: трансивер, сетевой контролер, память микропрограмм и своя оперативная память. Трансивер обеспечивает превращение сигналов и связок со средой передачи. Сетевой контролер – это специализирован процессор, который реализует протокол доступа к среде передачи. Память микропрограмм содержит программу управления сетевым контролером. Своя оперативная память используется для временного хранения кадров данных.
Назначение сетевого адаптера:
• подготовка данных, которые поступают от компьютера, для передачи по сетевому кабелю;
• передача данных другому компьютеру;
•управление потоком данных между компьютером и кабельной системой.
Серверы
Под сервером понимают компьютер, который предоставляет свои ресурсы другим компьютерам, которые называются клиентами. По сути дела, сервер осуществляет обработку и хранение основной информации, которая находится в компьютерной сети. В связи с разнообразием используемой информации и видов ее обработки существуют разные типы серверов, один из которых есть файловый сервер.
Под файловым сервером понимают компьютер, который подключен к сети и используется для хранения файлов данных, к которым обращаются рабочие станции. С точки зрения пользователя файловый сервер рассматривается как центральный архив, в котором сохраняется общая для всех рабочих станций информация.
В более сложных сетях кроме файлового сервера могут присутствовать и другие виды серверов, например: сервер печати, сервер базы данных, Web-сервер, почтовый сервер и др.
Сервер печати – это компьютер, который специализируется на управлении доступом пользователей к системным устройствам вывода, например принтеров. В крупных сетях сервер печати может руководить одновременно несколькими принтерами.
Сервер базы данных предназначен для хранения базы данных и управления доступом к ней. База данных – это совокупность связанных объектов, которые включают и таблицы, и формы, и отчеты и др. Формирование баз данных, установка связи между ее объектами, а также организация доступа к содержанию базы осуществляется с помощью специального приложения – системы управления базой данных (СУБД).
Web-сервер – это сервер, ориентированный на выполнение специальных задач взаимодействия с сетью Internet. Он предоставляет рабочим станциям максимально возможный набор услуг межсетевого взаимодействия.
Почтовый сервер – компьютер, который управляет потоком электронной почты, передачей сообщений и связью с серверами глобальных сетей, в частности Internet.
Оборудование серверов.
По составу оборудования серверы мало чем отличаются от рабочих станций, однако до самого оборудования существуют высшие востребования. Это связано с тем, что файловый сервер должен достаточно быстро обрабатывать большое количество запросов от всех рабочих станций. Для обеспечения нужной производительности серверы оснащаются высокопродуктивными процессорами, например Pentium II с тактовой частотой 233 Мгц и выше. Возможно, использование систем с несколькими процессорами одновременно.
С целью повышения производительности в серверах широко используется кэш-память. Эта сверхбыстродействующая память предназначена для временного хранения команд и данных, к которым происходит наичистейшее обращение.
Для предупреждения потери информации при работе с жесткими дисками в серверах используется система RAID – избыточные массивы недорогих дисков. Система RAID включает набор жестких дисков, при этом реализуются разные режимы одновременной записи одной и той же информации на несколько жестких дисков. Это позволяет в случае сбоя жесткого диску возобновлять данные из резервной копии, которые находятся на другом диске.
Для обеспечения нормальной работы компьютерной сети и предупреждения потери информации при внезапном отключении силового питания сервер должен питаться от источника бесперебойного питания (UPS). Источник бесперебойного питания использует аккумуляторную батарею для поддержки работоспособности компьютера (сервера) в течение времени, достаточного для сохранения данных, закрытия программ и нормального завершения работы. Есть “умные” источники бесперебойного питания, какие сами корректные свертывают работу сервера, исключают его, а при появлении напряжения питания автоматически возобновляют работу системы.
Серверы предназначены для коллективной обработки и хранения данных. Данное оборудование характеризуется высокой нагрузочной способностью (меньшее падение производительности при росте нагрузки), большой производительностью системы в целом, хорошей расширяемостью, управляемостью, средствами диагностики и отказоустойчивостью. Как следствие всего этого – более высокая цена.
Прикладные многопользовательские коммерческие и бизнес - системы, включающие системы управления базами данных и обработки транзакций, крупные издательские системы, сетевые приложения и системы обслуживания коммуникаций, разработку программного обеспечения и обработку изображений все более настойчиво требуют перехода к модели вычислений "клиент-сервер" и распределенной обработке. В распределенной модели "клиент-сервер" часть работы выполняет сервер, а часть пользовательский компьютер (в общем случае клиентская и пользовательская части могут работать и на одном компьютере). Существует несколько типов серверов, ориентированных на разные применения: файл-сервер, сервер базы данных, принт-сервер, вычислительный сервер, сервер приложений. Таким образом, тип сервера определяется видом ресурса, которым он владеет (файловая система, база данных, принтеры, процессоры или прикладные пакеты программ).
С другой стороны существует классификация серверов, определяющаяся масштабом сети, в которой они используются: сервер рабочей группы, сервер отдела или сервер масштаба предприятия (корпоративный сервер). Эта классификация весьма условна. Например, размер группы может меняться в диапазоне от нескольких человек до нескольких сотен человек, а сервер отдела обслуживать от 20 до 150 пользователей. Очевидно в зависимости от числа пользователей и характера решаемых ими задач требования к составу оборудования и программного обеспечения сервера, к его надежности и производительности сильно варьируются.
Файловые серверы небольших рабочих групп (не более 20-30 человек) проще всего реализуются на платформе персональных компьютеров и программном обеспечении Novell NetWare. Файл-сервер, в данном случае, выполняет роль центрального хранилища данных. Серверы прикладных систем и высокопроизводительные машины для среды "клиент-сервер" значительно отличаются требованиями к аппаратным и программным средствам.
Типичными для небольших файл-серверов являются: процессор 486DX2/66 или более быстродействующий, 32-Мбайт ОЗУ, 2 Гбайт дискового пространства и один адаптер Ethernet 10BaseT, имеющий быстродействие 10 Мбит/с. В состав таких серверов часто включаются флоппи-дисковод и дисковод компакт-дисков. Графика для большинства серверов несущественна, поэтому достаточно иметь обычный монохромный монитор с разрешением VGA.
Скорость процессора для серверов с интенсивным вводом/выводом некритична. Они должны быть оснащены достаточно мощными блоками питания для возможности установки дополнительных плат расширения и дисковых накопителей. Желательно применение устройства бесперебойного питания. Оперативная память обычно имеет объем не менее 32 Мбайт, что позволит операционной системе (например, NetWare) использовать большие дисковые кэши и увеличить производительность сервера. Как правило, для работы с многозадачными операционными системами такие серверы оснащаются интерфейсом SCSI (или Fast SCSI). Распределение данных по нескольким жестким дискам может значительно повысить производительность.
При наличии одного сегмента сети и 10-20 рабочих станций пиковая пропускная способность сервера ограничивается максимальной пропускной способностью сети. В этом случае замена процессоров или дисковых подсистем более мощными не увеличивают производительность, так как узким местом является сама сеть. Поэтому важно использовать хорошую плату сетевого интерфейса.
Хотя влияние более быстрого процессора явно на производительности не сказывается, оно заметно снижает коэффициент использования ЦП. Во многих серверах этого класса используется процессоры 486DX2/66, Pentium с тактовой частотой 60 и 90 МГц, microSPARC-II и PowerPC. Аналогично процессорам влияние типа системной шины (EISA со скоростью 33 Мбит/с или PCI со скоростью 132 Мбит/с) также минимально при таком режиме использования.
Однако для файл-серверов общего доступа, с которыми одновременно могут работать несколько десятков, а то и сотен человек, простой однопроцессорной платформы и программного обеспечения Novell может оказаться недостаточно. В этом случае используются мощные многопроцессорные серверы с возможностями наращивания оперативной памяти до нескольких гигабайт, дискового пространства до сотен гигабайт, быстрыми интерфейсами дискового обмена (типа Fast SCSI-2, Fast&Wide SCSI-2 и Fiber Channel) и несколькими сетевыми интерфейсами. Эти серверы используют операционную систему UNIX, сетевые протоколы TCP/IP и NFS. На базе многопроцессорных UNIX-серверов обычно строятся также серверы баз данных крупных информационных систем, так как на них ложится основная нагрузка по обработке информационных запросов. Подобного рода серверы получили название суперсерверов.
По уровню общесистемной производительности, функциональным возможностям отдельных компонентов, отказоустойчивости, а также в поддержке многопроцессорной обработки, системного администрирования и дисковых массивов большой емкости суперсерверы вышли в настоящее время на один уровень с мейнфреймами и мощными миникомпьютерами. Современные суперсерверы характеризуются:
- наличием двух или более центральных процессоров RISC, либо Pentium, либо Intel 486;
- многоуровневой шинной архитектурой, в которой запатентованная высокоскоростная системная шина связывает между собой несколько процессоров и оперативную память, а также множество стандартных шин ввода/вывода, размещенных в том же корпусе;
- поддержкой технологии дисковых массивов RAID;
- поддержкой режима симметричной многопроцессорной обработки, которая позволяет распределять задания по нескольким центральным процессорам или режима асимметричной многопроцессорной обработки, которая допускает выделение процессоров для выполнения конкретных задач.
Как правило, суперсерверы работают под управлением операционных систем UNIX, а в последнее время и Windows NT (на Digital 2100 Server Model A500MP), которые обеспечивают многопотоковую, многопроцессорную и многозадачную обработку. Суперсерверы должны иметь достаточные возможности наращивания дискового пространства и вычислительной мощности, средства обеспечения надежности хранения данных и защиты от несанкционированного доступа. Кроме того, в условиях быстро растущей организации, важным условием является возможность наращивания и расширения уже существующей системы.