Формула пуассона

Формула Бернулли удобна для вычислений лишь при сравнительно небольшом числе испытаний n. При больших значениях n и малых рпользоваться этой формулой неудобно. Чаще всего в этих случаях используют формулу Пуассона. Эта формула определяется теоремой Пуассона.

Теорема 1. Если вероятность р наступления события А в каждом испытании постоянна и мала, а число независимых испытаний и достаточно велико, то вероятность того, что событие А наступит m раз, приближенно равна

формула пуассона - student2.ru (4)

где l=np

Пример. Предприятие изготовило и отправило заказчику 100 000 бутылок пива. Вероятность того, что бутылка может оказаться битой, равна 0,0001. Найти вероятности того, что в отправленной партии бу- дет три и пять битых бутылок.

РЕШЕНИЕ. Дано: n = 100 000, р = 0,0001, и = 3 (т = 5). Находим Х = пр = 10.

Воспользуемся формулой Пуассона:

формула пуассона - student2.ru

формула пуассона - student2.ru формула пуассона - student2.ru

ЗАДАЧА 1. В результате обследования были выделены семьи, имеющие по 4 ребенка. Считая вероятности появления мальчика и девочки в семье равными, определить вероятности появления в ней:

А) 1 мальчика;

Б) 2 мальчиков.

РЕШЕНИЕ. вероятность появления мальчика или девочки равна р=1/2. Вероятность появления мальчика в семье, имеющей 4 детей, находится по формуле Бернулли:

формула пуассона - student2.ru

Вероятность появления в семье 2 мальчиков равна

формула пуассона - student2.ru

ЗАДАЧА 2.В новом микрорайоне поставлено 10000 кодовых замков на входных дверях домов. Вероятность выхода из строя одного замка в течение месяца равна а) 0,0002; б) 0,001. Найти вероятность того, что за месяц откажут 2, 3 и 5 замков.

РЕШЕНИЕ. а) Используем формулу Пуассона

формула пуассона - student2.ru , l=np

В нашем случае l=10000*0,0002=2,

Тогда Р10000(2)=22е-2/2!=0,27;

Р10000(3)=23е-2/3!=0,18; (е-2=1/(2,71*2,71)=1/7,34)

Р10000(5)=25е-2/5!=0,36;

Б) е-10=0,000045

ЛИТЕРАТУРА:

1. Информатика и математика для юристов.// Под ред. Х.А.Андриашина. – М.: ЮНИТИ, 2003.

2. Основы информатики и математики для юристов. // Богатов и Богатов. Учебное пособие для вузов.

3. Козлов В.Н. Математика и информатика. //Учебное пособие. СПб: Питер, 2004.

4. Основы информатики. В.З. Аладьев и др.// Учебное пособие.-1999.

Наши рекомендации