Виды вычислительных систем

ВЫЧИСЛИТЕЛЬНЫЕ СИСТЕМЫ

Основные положения

Если не вдаваться в подробности, вычислительные системы (ВС) прежде всего можно различать, как:

- многомашинные;

- многопроцессорные.

Вычислительные системы, которые строятся на основе целых компьютеров, называются многомашинными, а на отдельных процессорах- многопроцессорными.

Вычислительная система (ВС) — совокупность взаимосвязанных и взаимодействующих процессоров или ЭВМ, периферийного обо­рудования и программного обеспечения, предназначенная для сбо­ра, хранения, обработки и распределения информации.

Создание ВС преследует следующие основные цели:

- повышение производительности системы за счет ускорения
процессов обработки данных;

- повышение надежности и достоверности вычислений;

- предоставление пользователям дополнительных сервисных ус­
луг и т. д.

Отличительной особенностью ВС по отношению к классиче­ским ЭВМ является наличие в ней нескольких вычислителей, реа­лизующих параллельную обработку.

Параллелизм выполнения операций существенно повышает бы­стродействие системы; он может также значительно повысить и на­дежность (при отказе одного компонента системы его функции мо­жет взять на себя другой), и достоверность функционирования сис­темы, если операции будут дублироваться, а результаты их выполнения сравниваться.

Параллелизм в вычислениях в значительной степени усложняет управление вычислительным процессом, использование техниче­ских и программных ресурсов. Эти функции выполняет операцион­ная система ВС.

Несмотря на то, что классическим является многомашинный вариант ВС, в ВС может быть только один процессор , но агрегированный с многофункциональным периферийным оборудованием (стоимость периферийного оборудования часто во много раз пре­восходит стоимость центральных устройств компьютера). В компь­ютере может быть как несколько процессоров (тогда имеет место также классический многопроцессорный вариант ВС), так и один процессор (если не брать в расчет специализированные процессоры, входящие в состав периферийных устройств).

Виды вычислительных систем

В зависимости от ряда признаков различают следующие вычислительные системы (ВС):

- однопрограммные и многопрограммные (в зависимости от количества программ, одновременно находящихся в оперативной памяти);

- индивидуального и коллективного пользования (в зависимости от числа пользователей, которые одновременно могут использовать ресурсы ВС);

- с пакетной обработкой и разделением времени (в зависимости от организации и обработки заданий);

- однопроцессорные, многопроцессорные и многомашинные (в зависимости от числа процессоров);

- сосредоточенные, распределенные (вычислительные сети) и ВС с теледоступом (в зависимости от территориального расположения и взаимодействия технических средств);

- работающие или не работающие в режиме реального времени (в зависимости от соотношения скоростей поступления задач в ВС и их решения);

- универсальные, специализированные и проблемно-ориентированные (в зависимости от назначения).

Виды вычислительных систем

Многомашинная вычислительная система. Здесь несколько про­цессоров, входящих в вычислительную систему, не имеют общей оперативной памяти, а имеют каждый свою (локальную). Каждый компьютер в многомашинной системе имеет классическую архитек­туру, и такая система применяется достаточно широко. Однако эф­фект от применения такой вычислительной системы может быть получен только при решении задач, имеющих очень специальную структуру, она должна разбиваться на столько слабо связанных под­задач, сколько компьютеров в системе.

Многомашинные вычислительные системы — это системы, содержащие несколь­ко одинаковых или различных, относительно самостоятельных компьютеров, связанных между собой через устройство обмена информацией, в частности, по каналам связи. В последнем случае речь идет об информационно-вычислитель­ных сетях.

В многомашинных ВС каждый компьютер работает под управлением своей опе­рационной системы (ОС). А поскольку обмен информацией между машинами выполняется под управлением разных ОС, взаимодействующих друг с другом, динамические характеристики процедур обмена несколько ухудшаются (требу­ется время на согласование работы самих ОС). Информационное взаимодейст­вие компьютеров в многомашинной ВС может быть организовано на нескольких уровнях. На рисунке показано на уровне:

● процессоров;

● оперативной памяти (ОП);

● каналов связи.

При непосредственном взаимодействии процессоров друг с другом информаци­онная связь реализуется через регистры процессорной памяти и требует наличия в ОС весьма сложных специальных программ.

Взаимодействие на уровне ОП сводится к программной реализации общего поля оперативной памяти, что несколько проще, но также требует существенной мо­дификации ОС. Под общим полем имеется в виду равнодоступность модулей па­мяти: все модули памяти доступны всем процессорам и каналам связи.

Па уровне каналов связи взаимодействие организуется наиболее просто и может быть достигнуто внешними по отношению к ОС программами-драйверами, обес­печивающими доступ от каналов связи одной машины к внешним устройствам других (формируется общее поле внешней памяти и общий доступ к устройст­вам ввода-вывода).

Все вышесказанное иллюстрируется схемой взаимодействия компьютеров в двух­машинной ВС, представленной на рис. 22.1.

Виды вычислительных систем - student2.ru

Ввиду сложности организации информационного взаимодействия на 1-м и 2-м уровнях в большинстве многомашинных ВС используется 3-й уровень, хотя и динамические характеристики (в первую очередь быстродействие), и показате­ли надежности таких систем существенно ниже.

Цели, которые ставятся при объединении ЭВМ, могут быть различными, и они определяют характер связей между ЭВМ. Чаще всего основной целью объединения является или увеличение производительности, или повышение надежности, или одновременно и то и другое. Однако при достижении одних и тех же целей связи между ЭВМ могут существенно различаться.

По характеру связей между ЭВМ их можно разделить на три типа:

- косвенно-, или слабосвязанные;

- прямосвязанные;

- сателлитные.

В косвенно-, или слабосвязанных, комплексах ЭВМ связаны друг с другом только через внешние запоминающие устройства (ВЗУ). Для обеспечения таких связей используются устройства управления ВЗУ с двумя и более входами. В косвенно-связанных комплексах связь между ЭВМ осуществляется только на информационном уровне. Обмен информацией осуществляется в основном по принципу «почтового ящика», т. е. каждая из ЭВМ помещает в общую внешнюю память информацию, руководствуясь собственной программой, и соответственно другая ЭВМ принимает эту информацию, исходя из своих потребностей. Такая организация связей обычно используется в тех случаях, когда ставится задача повысить надежность комплекса путем резервирования ЭВМ. В этом случае ЭВМ, являющаяся основной, решает заданные задачи, выдает результаты и постоянно оставляет в общем ВЗУ всю информацию, необходимую для продолжения решения с любого момента времени. Вторая ЭВМ, являющаяся резервной, может находиться в состоянии ожидания, с тем чтобы в случае выхода из строя основной ЭВМ, по сигналу оператора начать выполнение функций, используя информацию, хранимую в общем ВЗУ основной ЭВМ.

При такой связи может быть несколько способов организации работы комплекса.

1. Резервная ЭВМ находится в выключенном состоянии (ненагруженный резерв) и включается только при отказе основной ЭВМ. Естественно, для того чтобы резервная ЭВМ начала выдавать результаты вместо основной, потребуется определенное время, которое определяется временем, необходимым для включения ЭВМ, вхождением ее и режим, а также временем, отводимым для проверки ее исправности. Это время может быть достаточно большим. Такая организация возможна, когда система, в которой работает ЭВМ, не критична по отношению к некоторым перерывам или остановкам в процессе решения задач. Это обычно имеет место в случаях, когда ЭВМ не выдает управляющую информацию.

2. Резервная ЭВМ находится в состоянии полной готовности и в любой момент может заменить основную ЭВМ (нагруженный резерв), причем либо не решает никаких задач, либо работает в режиме самоконтроля, решая контрольные задачи. В этом случае переход в работе от основной к резервной ЭВМ может осуществляться достаточно быстро, практически без перерыва в выдаче результатов. Однако следует заметить, что основная ЭВМ обновляет в общем ВЗУ информацию, необходимую для продолжения решения, не непрерывно, а с определенной дискретностью, поэтому резервная ЭВМ начинает решать задачи, возвращаясь на некоторое время назад. Такая организация допустима и в тех случаях, когда ЭВМ работает непосредственно в контуре управления, а управляемым процесс достаточно медленным и возврат во времени не оказывает заметного влияния.

При организации работы по первому и второму вариантам ЭВМ используются нерационально: одна ЭВМ всегда простаивает. Простоев можно избежать, загружая ЭВМ решением каких-то вспомогательных задач, не имеющих отношения к основному процессу. Это повышает эффективность системы – производительность практически удваивается.

3. Для того чтобы полностью исключить перерыв в выдаче результатов, обе ЭВМ, и основная и резервная, решают одновременно одни и те же задачи, но результаты выдаст только основная ЭВМ, а в случае выхода се из строя результаты начинает вы давать резервная ЭВМ. При этом общее ВЗУ используется только для взаимного контроля. Иногда такой комплекс дополняется устройством для сравнения результатов с целью контроля. Если при этом используются три ЭВМ, то возможно применение метода голосования, когда окончательный результат выдается только при совпадении результатов решения задачи не менее чем от двух ЭВМ. Это повышает и надежность комплекса в целом, и достоверность выдаваемых результатов. Разумеется, в этом варианте высокая надежность и оперативность достигается весьма высокой ценой – увеличением стоимости системы.

Существенно большой гибкостью обладают прямосвязанные ЭВМ. В прямосвязанных комплексах существуют три вида связей: общее ОЗУ (ООЗУ); прямое управление, иначе связь процессор (П) – процессор; адаптер канал – канал (АКК).

Связь через общее ОЗУ гораздо сильнее связи через ВЗУ. Хотя первая связь также носит характер информационной связи и обмен информацией осуществляется по принципу «почтового ящика», однако, вследствие того, что процессоры имеют прямой доступ к ОЗУ, все процессы в системе могут протекать с существенно большей скоростью, а разрывы в выдаче результатов при переходах с основной ЭВМ на резервную сокращаются до минимума. Недостаток связи через общее ОЗУ заключается в том, что при выходе из строя ОЗУ, которое является сложным электронным устройством, нарушается работа всей системы. Чтобы этого избежать, приходится строить общее ОЗУ из нескольких модулей и резервировать информацию. Это, в свою очередь, приводит к усложнению организации вычислительного процесса в комплексе и в конечном счете к усложнению операционных систем. Следует отметить также и то, что связи через общее ОЗУ существенно дороже, чем через ВЗУ.

Непосредственная связь между процессорами – канал прямого управления – может быть не только информационной, но и командной, т. е. по каналу прямого управления один процессор может непосредственно управлять действиями другого процессора. Это, естественно, улучшает динамику перехода от основной ЭВМ к резервной, позволяет осуществлять более полный взаимный контроль ЭВМ. Вместе с тем передача сколько-нибудь значительных объемов информации по каналу прямого управления нецелесообразна, так как в этом случае решение задач прекращается: процессоры ведут обмен информацией.

Связь через адаптер канал – канал в значительной степени устраняет недостатки связи через общее ОЗУ и вместе с тем почти не уменьшает возможностей по обмену информацией между ЭВМ по сравнению с общим ОЗУ. Сущность этого способа связи заключается в том, что связываются между собой каналы двух ЭВМ с помощью специального устройства – адаптера. Обычно это устройство подключается к селекторным каналам ЭВМ. Такое подключение адаптера обеспечивает достаточно быстрый обмен информацией между ЭВМ, при этом обмен может производиться большими массивами информации. В отношении скорости передачи информации связь через АКК мало уступает связи через общее ОЗУ, а в отношении объема передаваемой информации – связи через общее ВЗУ. Функции АКК достаточно просты: это устройство должно обеспечивать взаимную синхронизацию работы двух ЭВМ и буферизацию информации при ее передаче. Хотя функции АКК и его структура достаточно просты, однако большое разнообразие режимов работы двух ЭВМ и необходимость реализации этих режимов существенно усложняет это устройство.

Прямосвязанные комплексы позволяют осуществлять все способы организации ММВК, характерные для слабосвязанных комплексов. Однако за счет некоторого усложнения связей эффективность комплексов может быть значительно повышена. В частности, в прямосвязанных комплексах возможен быстрый переход от основной ЭВМ к резервной и в тех случаях, когда резервная ЭВМ загружена собственными задачами. Это позволяет обеспечивать высокую надежность при высокой производительности.

В реальных комплексах одновременно используется не один вид связи между ЭВМ, а два или более. В том числе очень часто в прямосвязанных комплексах присутствует и косвенная связь через ВЗУ.

Для комплексов с сателлитными ЭВМ характерным является не способ связи, а принципы взаимодействии ЭВМ. Структура связей в сателлитных комплексах не отличается от связей в обычных ММВК: чаще всего связь между ЭВМ осуществляется через АКК. Особенностью же этих комплексов является то, что в них, во-первых, ЭВМ существенно различаются по своим характеристикам, а во-вторых, имеет место определенная соподчиненность машин и различие функций, выполняемых каждой ЭВМ. Одна из ЭВМ, основная, является, как правило, высокопроизводительной и предназначается для основной обработки информации. Вторая, существенно меньшая по производительности, называется сателлитной или вспомогательной ЭВМ. Ее назначение – организация обмена информацией основной ЭВМ с периферийными устройствами, ВЗУ, удаленными абонентами, подключенными через аппаратуру передачи данных к основной ЭВМ. Кроме того, сателлитная ЭВМ может производить предварительную сортировку информации, преобразование ее в форму, удобную для обработки на основной ЭВМ, приведение выходной информации к виду, удобному для пользователя, и др. Сателлитная ЭВМ, таким образом, избавляет основную высокопроизводительную ЭВМ от выполнения многочисленных действий, которые не требуют ни большой разрядности, ни сложных операций, т. е. операций, для которых большая, мощная ЭВМ не нужна. Более того, с учетом характера выполняемых сателлитной машиной операций она может быть ориентирована на выполнение именно такого класса операций и обеспечивать даже большую производительность, чем основная ЭВМ.

Некоторые комплексы включают в себя не одну, а несколько сателлитных ЭВМ, при этом каждая из них ориентируется на выполнение определенных функций: например, одна осуществляет связь основной ЭВМ с устройствами ввода–вывода информации, другая – связь с удаленными абонентами, третья организует файловую систему и т. д.

Появление в последнее время дешевых и простых микро-ЭВМ в немалой степени способствует развитию сателлитных комплексов. Сателлитные комплексы решают только одну задачу: увеличивают производительность комплекса, не оказывая заметного влияния на показатели надежности.

Подключение сателлитных ЭВМ принципиально возможно не только через АКК, но и другими способами, однако связь через АКК наиболее удобна.

Наши рекомендации