Согласование скоростей обмена и кэширования данных
При обмене данными всегда возникает задача согласования скоростей работы устройств. Решение этой задачи достигается буферизацией данных [10, 17]. В подсистеме ввода-вывода часто используется буферизация в оперативной памяти. Однако буферизация только на основе оперативной памяти часто оказывается недостаточной из-за большой разницы скоростей работы оперативной памяти, и внешнего устройства объема оперативной памяти может просто не хватить. В этих случаях часто используют в качестве буфера дисковый файл, называемый спул-файлом. Типичный пример применения спулинга – вывод данных на принтер (для печатаемых документов объем в несколько Мбайт – не редкость, поэтому временное хранение такого файла в течение десятков минут в оперативной памяти нецелесообразно).
Другим решением проблемы является использование большой буферной памяти в контроллерах внешних устройств. Такой подход полезен в тех случаях, когда помещение данных на диск слишком замедляет обмен (или когда данные выводятся на сам диск). Например, в контроллерах графических дисплеев применяется буферная память, соизмеримая по обмену по обмену с оперативной памятью, и это существенно ускоряет вывод графика на экран.
При рассмотрении различных методов буферизации нужно учитывать, что существует, как отмечалось, два типа устройств – блочные и символьные. Первые сохраняют информацию блоками фиксированного размера и передают поблочно (диски, ленты). Вторые выполняют передачу в виде неструктурированных потоков байтов (терминалы, принтеры, манипулятор мыши, сканеры и др.).
Возможные схемы буферизации ввода-вывода приведены на рис. 7.3.
Рис. 7.3. Варианты буферизации
Простейший тип поддержки со стороны ОС – одинарный буфер. В тот момент, когда пользовательский процесс выполняет запрос ввода-вывода, операционная система назначает ему буфер в системной части оперативной памяти. Работа одинарного буфера для блочно-ориентированных устройств может быть описана следующим образом. Сначала осуществляется передача входных данных в системный буфер. Когда она завершается, процесс перемещает блок в пользовательское пространство и немедленно производит запрос следующего блока. Такая процедура называется опережающим считыванием, или упреждающим вводом.
Подобный подход по сравнению с отсутствием буферизации обеспечивает повышение быстродействия, поскольку пользовательский процесс может обрабатывать один блок данных в то время, когда происходит считывание следующего блока.
Пусть Т – время, необходимое для ввода одного блока, а С – для вычислений, выполняющихся между запросами на ввод-вывод. Без буферизации время выполнения, приходящееся на один блок, будет равно Т + С. При использовании одинарной буферизации время будет равно max [С, T] + M, где М – время перемещения данных из системного буфера в пользовательскую память. В большинстве случаев T + C > max [C, T] + M.
Схема одинарного буфера может быть применена и при поточно-ориентированном вводе-выводе – построчно или побайтно ( в строчных принтерах, терминалах и др.). Например, при операции вывода пользовательский процесс может разместить в буфере строку и продолжить работу. Улучшить схему одинарной буферизации можно путем использования двух буферов. Теперь процесс выполняет передачу данных в один буфер (или считывает из него), в то время как ОС освобождает (или заполняет) другой. Эта технология известна как двойная буферизация, или сменный буфер.
Время выполнения при блочно-ориентированной передаче можно грубо оценить как max [C, T]. Таким образом, если C T, то блочно-ориентированное устройство может работать с максимальной скоростью. Если C > T , то двойная буферизация избавляет процесс от необходимости ожидания завершения ввода-вывода.
Двойной буферизации может оказаться недостаточно, если процесс часто выполняет ввод или вывод. Решить проблему помогает наращивание количества буферов. Если буфер больше двух, схема именуется циклической буферизацией.
Буферизация данных позволяет не только согласовать скорости работы процессора и внешних устройств, но и решить другую задачу – сократить количество реальных операций ввода-вывода за счет кэширования данных. Дисковый кэш является непременным атрибутом подсистем ввода-вывода практически всех операционных систем и значительно сокращает время доступа к хранимым данным.