Арифметические операции с целыми числами в восьмеричной и шестнадцатеричной системах счисления

Как и в десятичной или двоичной системах счисления все арифметические операции с целыми числами в восьмеричной или шестнадцатеричной системах счисления основаны на таблицах сложения и умножения. Таблицы сложения и умножения в восьмеричной и шестнадцатеричной системах счисления приведены в таблицах 8, 9, 10 и 11.

Таблица 8.

Таблица сложения целых чисел в восьмеричной системе счисления.

 

Таблица 9.

Таблица умножения целых чисел в восьмеричной системе счисления.

 

Таблица 10.

Таблица сложения целых чисел в шестнадцатеричной системе счисления.

  A B C D E F
A B C D E F
A B C D E F
A B C D E F
A B C D E F
A B C D E F
A B C D E F
A B C D E F
A B C D E F
A B C D E F
A B C D E F
A A B C D E F
B B C D E F 1A
C C D E F 1A 1B
D D E F 1A 1B 1C
E E F 1A 1B 1C 1D
F F 1A 1B 1C 1D 1E

Таблица 11.

Таблица сложения целых чисел в шестнадцатеричной системе счисления.



  A B C D E F
A B C D E F
A C E 1A 1C 1E
B F 1B 1E 2A 2D
B 1C 2C 3C
A F 1E 2D 3C 4B
C 1E 2A 3C 4E 5A
E 1C 2A 3F 4D 5B
1B 2D 3F 5` 5A 6C 7E
A A 1E 3C 5A 6E 8C
B B 2C 4D 6E 8F 9A A5
C C 3C 6C 9C A8 B4
D D 1A 4E 5B 8F 9C A9 B6 C3
E E 1C 2A 7E 8C 9A A8 B6 C4 D2
F F 1E 2D 3C 4B 5A A5 B4 C3 D2 E1

Арифметические операции с вещественными числами в двоичной системе счисления.

Арифметические операции с вещественными числами в двоичной системе счисления аналогичны операциям в десятичной системе счисления. Рассмотрим процесс выполнения действий на примерах.

Пример 1.

Дано A(2)=10011,01. B(2)=1,0101 представленные в форме записи с фиксированной запятой. Найти C(2)= A(2)+B(2).

Решение:

Выравниваем количество знаков после запятой: A(2)=10011,0100. B(2)=1,0101

Выполняем операцию сложения

10011,0100 +1,0101
10100,1001

Ответ C(2)=10100,1001

Пример 2.

Дано A(2)=0,1001101*10101. B(2)=0,10101*101 представленные в форме записи с плавающей запятой. Найти C(2)= A(2)+B(2).

Решение:

Выравниваем порядки чисел:

A(2)=0,1001101*10101.

B(2)=0,10101*101=0,000010101*10101.

Складываем мантиссы:

Для этого выравниваем количество знаков после запятой: A(2)=0,100110100, B(2)= 0,000010101

Выполняем операцию сложения мантисс чисел представленных в двоичной системе счисления так же как и в случае представления чисел в форме записи с фиксированной запятой

0,100110100 +0,000010101
0,101001001

В результате сложения мантисс получили результат: 0,101001001. Дописываем показатель и получаем ответ.

Ответ C(2)=0,101001001*10101.

Операции умножения вычитания и деления производятся по аналогичному алгоритму.

Логические операции.

В информатике под понятием логическим операции понимают результат сравнения по какому либо правилу заданных величин и выдачу ответа имеющего всего два значения истина и лож. Вся работа любой вычислительной техники основана на выполнении логически операций и операций переноса. Правила, определяющие результат выполнения логической операции, то есть результаты, которые получаться в результате выполнения функции с конкретными исходными данными называются таблицами истинности.

Существует три основных закона логического сравнения величин это И(and), ИЛИ(or) и НЕ(not). Схематическое представление элементов выполняющих логические операции и соответствующие им таблицы истинности представлено в таблице 12.

Таблица 12. Описание логических элементов вычислительной техники.

Операция Элемент Таблица истинности
Логическое произведение (конъюнкция). Операция «И». Результат логической суммы совпадает с результатом арифметического произведения. Результат будет равен истина, только в случае, если оба аргумента равны единице. Арифметические операции с целыми числами в восьмеричной и шестнадцатеричной системах счисления - student2.ru A B A И Б
Логическая сумма (дизъюнкция). Операция «ИЛИ». Результат логической суммы, отличается от результата суммы двух одноразрядных двоичных чисел. Результатом будет истина, если хотя бы один входной аргумент равен единице. Арифметические операции с целыми числами в восьмеричной и шестнадцатеричной системах счисления - student2.ru A B A ИЛИ B
Логическое отрицание(инверсия). Операция «НЕ» Результатом логической операции отрицание будет изменение значения входного аргумента: истина на лож и обратно. Арифметические операции с целыми числами в восьмеричной и шестнадцатеричной системах счисления - student2.ru A НЕ A
           

Этих трех элементов логических функций и операций переноса(сдвига) достаточно, для тог, чтобы организовать любую операцию арифметического вычисления или сравнения чисел в двоичной системе счисления.

Под сдвигом понимается смещение разрядов двоичного числа в право или в лево, в зависимости от указанного направления. Освободившееся после сдвига место заполняется нулями. В любой позиционной системе счисления сдвиг в лево(<<) на один разряд означает умножение на основание системы счисления, а сдвиг в право(>>) на один разряд - деление на основание системы счисление.

Пример 1.

Дано A(10)=123. Умножить число с помощью операции сдвига на 100(10).

Решение:

100=102 следовательно для умножения заданного числа на 100 необходимо выполнить сдвиг на два разряда в лево

A(10)=123*100=123 << 2=12300

Ответ A(10)=12300.

Пример 2.

Дано A(10)=345. Разделить число с помощью операции сдвига на 1000(10).

Решение:

Для выполнения операции деления на 1000 необходимо умножить исходное число на 1/1000

1/1000=0,001=10-3 следовательно для деления заданного числа на 1000 необходимо выполнить сдвиг на три разряда в право

A(10)=345/1000=345 >> 3=0,345

Ответ A(10)=0,345.

Пример 3.

Дано A(2)=11010. Умножить число с помощью операции сдвига на 100(2).

Решение:

100=22 следовательно для умножения заданного числа на 100 необходимо выполнить сдвиг на два разряда в лево

A(10)= 11010*100=11010 << 2=1101000

Ответ A(2)= 1101000.

Пример 4.

Дано A(2)=11010. Разделить число с помощью операции сдвига на 10 (2).

Решение:

Для выполнения операции деления на 10 необходимо умножить исходное число на 1/10

1/10=0,1=10-1 следовательно для деления заданного числа на 10 необходимо выполнить сдвиг на один разряда в право

A(10)=11010/10=11010 >> 1=1101

Ответ A(2)=1101.

Поскольку двоичная система счисления состоит всего из двух чисел {0,1} принято считать, что 0(2) в логических функциях представляет собой лож, а 1(2) истину. Исходя из этого при помощи логических элементов можно организовать любой вычислительный процесс. Рассмотрим процесс сложения двоичных чисел на примере двухразрядного сумматора рисунок 9.

Арифметические операции с целыми числами в восьмеричной и шестнадцатеричной системах счисления - student2.ru

Для понимания принципа использования логических функций построим таблицу истинности получающуюся при выполнении процесса сложения для всех элементов таблица 13.

Таблица 13. Процессы происходящие в двухразрядном сумматоре.

X Y (не X) (не Y) (Y и 1) (X и 2) (XиY) (3или4) S P

На схеме приведенной на рисунке 10 на вход сумматора поступает два одноразрядных числа записанных в двоичной системе счисления. На выходу получаем одно двухразрядное число представляющее собой сумму одноразрядных чисел записанных на входе. Преобразуем таблицу 13 в таблицу истинности для сложения одноразрядных чисел, записанных в двоичной системе счислении, таблица 14.

Таблица 14.

Результат работы сумматора, основанного на выполнении логических операций.

X Y PS

В результате получили таблицу истинности, аналогичную таблице выполнения операции сложения в двоичной системе счисления таблица 6.

Аналогичным образом организованы и другие математические операции в устройствах вычислительной техники.

Наши рекомендации