Архитектура сетей Ethernet
Ethernet– пакетная технология передачи данных преимущественно локальных компьютерных сетей. Является самым распространенным на сегодняшний день стандартом локальных сетей.
Ethernet в основном описывается стандартами IEEE группы 802.3.
В зависимости от типа физической среды передачи данных стандарт IEEE 802.3 имеет различные модификации:
§ 10Base5 (толстый коаксиальный кабель);
§ 10Base2 (тонкий коаксиальный кабель);
§ 10Base-Т (витая пара);
§ 10Base-F (оптоволоконный кабель).
В основе Ethernet лежат следующие технологии:
§ В качестве физической топологии передачи данных могут быть использованы топологии шины, звезды и дерева;
§ В качестве логической топологии используется топология «шина»;
§ Метод доступа к среде - CSMA/CD;
§ Для передачи двоичной информации по кабелю для всех вариантов физического уровня технологии Ethernet используется манчестерский код;
§ Скорости передачи данных – 10, 100 и 1000 Мбит/с.
Стандарт 10BaseT
Физическая топология представляет собой "звезду" на основе витой пары, соединяющей все узлы сети с концентратором, используя две пары проводов: одну для передачи, другую - для приема (рис. ниже). Логически (т.е. по системе передачи сигналов) данная архитектура представляет собой "шину" как и все архитектуры Ethernet. Концентратор выступает как многопортовый репитер. Длина сегмента от 2,5 до 100 м. ЛВС стандарта 10BaseT может обслуживать до 1024 компьютеров.
Стандарт 10Base2
Сеть такого типа ориентирована на тонкий коаксиальный кабель с максимальной длиной сегмента 185 м и возможностью подключения к одному сегменту до 30 ЭВМ (рис. ниже).
Стандарт 10Base5
Сетевая архитектура на толстом Ethernet логически и физически представляет собой "шину" (рис. ниже). Магистральный сегмент (т. е. главный кабель, к которому подключаются трансиверы для связи с РС) имеет длину до 500 м и возможность подключения до 100 компьютеров. С использованием репитеров, которые также подключаются к магистральному сегменту через трансиверы, общая длина сети может составить 2500 м.
При описанном подходе (CSMA/CD) возможна ситуация, когда две станции одновременно пытаются передать кадр данных по общему кабелю (происходит коллизия). Для уменьшения вероятности этой ситуации непосредственно перед отправкой кадра передающая станция слушает кабель (то есть принимает и анализирует возникающие на нем электрические сигналы), чтобы обнаружить, не передается ли уже по кабелю кадр данных от другой станции. Если опознается несущая (carrier-sense, CS), то станция откладывает передачу своего кадра до окончания чужой передачи, и только потом пытается вновь его передать. Чтобы корректно обработать коллизию, все станции одновременно наблюдают за возникающими на кабеле сигналами. Если передаваемые и наблюдаемые сигналы отличаются, то фиксируется обнаружение коллизии (collision detection, CD).
Сети 802.11
Как и все стандарты IEEE 802, 802.11 работает на нижних двух уровнях модели ISO/OSI, физическом уровне и канальном уровне. Любое сетевое приложение, сетевая операционная система, или протокол (например, TCP/IP), будут так же хорошо работать в сети 802.11, как и в сети Ethernet.
Основная архитектура, особенности и службы 802.11a/b/g определяются в первоначальном стандарте 802.11. Спецификация 802.11a/b/g затрагивает только физический уровень, добавляя лишь более высокие скорости доступа.
Режимы работы 802.11
802.11 определяет два типа оборудования – клиент, который обычно представляет собой компьютер, укомплектованный беспроводной сетевой интерфейсной картой (Network Interface Card, NIC), и точку доступа (Access point, AP), которая выполняет роль моста между беспроводной и проводной сетями. Точка доступа обычно содержит в себе приёмопередатчик, интерфейс проводной сети (802.3), а также программное обеспечение, занимающееся обработкой данных.
Стандарт IEEE 802.11 определяет два режима работы сети – режим "Ad-hoc" и клиент/сервер. В режиме клиент/сервер беспроводная сеть состоит из как минимум одной точки доступа, подключенной к проводной сети, и некоторого набора беспроводных оконечных станций. Так как большинству беспроводных станций требуется получать доступ к файловым серверам, принтерам, Интернет, доступным в проводной локальной сети, они будут работать в режиме клиент/сервер.
Режим "Ad-hoc" (также называемый точка-точка) – это простая сеть, в которой связь между многочисленными станциями устанавливается напрямую, без использования специальной точки доступа. Такой режим полезен в том случае, если инфраструктура беспроводной сети не сформирована (например, отель, выставочный зал, аэропорт), либо по каким-то причинам не может быть сформирована.
На физическом уровне определены два широкополосных радиочастотных метода передачи и один – в инфракрасном диапазоне.
Канальный уровень 802.11 состоит из двух подуровней: управления логической связью (Logical Link Control, LLC) и управления доступом к носителю (Media Access Control, MAC). 802.11 использует тот же LLC и 48-битовую адресацию, что и другие сети 802, что позволяет легко объединять беспроводные и проводные сети, однако MAC уровень имеет кардинальные отличия.
Стандарт 802.11 предусматривает использование полудуплексных приёмопередатчиков, поэтому в беспроводных сетях 802.11 станция не может обнаружить коллизию во время передачи. Чтобы учесть это отличие, 802.11 использует модифицированный протокол, известный как Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA). CSMA/CA пытается избежать коллизий путём использования явного подтверждения пакета (ACK), что означает, что принимающая станция посылает ACK пакет для подтверждения того, что пакет получен неповреждённым.
CSMA/CA работает следующим образом. Станция, желающая передавать, тестирует канал, и если не обнаружено активности, станция ожидает в течение некоторого случайного промежутка времени, а затем передаёт, если среда передачи данных всё ещё свободна. Если пакет приходит целым, принимающая станция посылает пакет ACK, по приёме которого отправителем завершается процесс передачи. Если передающая станция не получила пакет ACK, в силу того, что не был получен пакет данных, или пришёл повреждённый ACK, делается предположение, что произошла коллизия, и пакет данных передаётся снова через случайный промежуток времени.
MAC уровень 802.11 предоставляет возможность расчёта CRC и фрагментации пакетов. Каждый пакет имеет свою контрольную сумму CRC, которая рассчитывается и прикрепляется к пакету. Здесь наблюдается отличие от сетей Ethernet, в которых обработкой ошибок занимаются протоколы более высокого уровня (например, TCP). Фрагментация пакетов позволяет разбивать большие пакеты на более маленькие при передаче по радиоканалу, что полезно в очень "заселённых" средах или в тех случаях, когда существуют значительные помехи, так как у меньших пакетов меньше шансы быть повреждёнными. Этот метод в большинстве случаев уменьшает необходимость повторной передачи и, таким образом, увеличивает производительность всей беспроводной сети. MAC уровень ответственен за сборку полученных фрагментов, делая этот процесс "прозрачным" для протоколов более высокого уровня.
Также MAC-подуровень обеспечивает механизмы шифрования данных, управление питанием, а также управляет процессом подключения абонента к сети.