Клетка как открытая система. Организация потоков вещества и энергии в клетке. Специализация и интеграция клеток в многоклеточном организме
Все живые организмы, обитающие на Земле, являются открытыми системами, для которых характерен непрерывно протекающий обмен веществ и энергии с окружающей средой. Обмен веществ и энергии – основное свойство живого. Жизнедеятельность клетки как единицы биологической активности обеспечивается совокупностью взаимосвязанных, приуроченных к определенным внутриклеточным структурам, упорядоченных во времени и пространстве (метаболических) процессов. Эти процессы образуют 3 потока: информации, энергии и веществ.
Поток энергии. Поток энергии у представителей разных групп организмов представлен внутриклеточными механизмами энергообеспечения — брожением, фото- или хемосинтезом, дыханием.
Центральная роль в биоэнергетике клеток животных принадлежит дыхательному обмену. Он включает реакции расщепления низкокалорийного органического «топлива» в виде глюкозы, жирных кислот, аминокислот и использования выделяемой энергии для синтеза высококалорийного клеточного «топлива» в виде АТФ. АТФ и другие соединения, богатые энергией в биологически утилизируемой форме, называются макроэргическими. Энергия АТФ, непосредственно или будучи перенесенной на другие макроэргические соединения, например креатинфосфат, используемый в мышцах, в разнообразных процессах преобразуется в тот или иной вид работы — химическую (синтезы), осмотическую (поддержание градиентов веществ), электрическую, механическую, регуляторную. Среди органелл животной клетки особое место в дыхательном обмене принадлежит митохондриям, с внутренней мембраной которых связаны ферменты дыхательной цепи, а также матриксу цитоплазмы, в котором протекает процесс безкислородного расщепления глюкозыанаэробный гликолиз. Из преобразователей энергии химических связей АТФ в работу наиболее изучена механохимическая система поперечнополосатой мышцы. Она состоит из сократительных белков и фермента, расщепляющего макроэргические соединения с высвобождением энергии.
Особенностью потока энергии растительной клетки служит фотосинтез механизм преобразования энергии солнечного света в энергию химических связей органических веществ.
Механизмы энергообеспечения клетки высокоэффективны. Коэффициенты полезного действия хлоропласта достигают 25%, а митохондрии — 45— 60%, существенно превосходя аналогичный показатель паровой машины (8%) или двигателя внутреннего сгорания (17%).
Поток вещества. Реакции дыхательного обмена не только поставляют энергию, но и снабжают клетку строительными блоками для синтеза разнообразных молекул. Ими служат многие продукты расщепления пищевых веществ. Особая роль в этом принадлежит центральному звену дыхательного обмена — циклу Кребса, осуществляемому в митохондриях. Через этот цикл проходит путь углеродных атомов (углеродных скелетов) большинства соединений, служащих промежуточными продуктами синтеза химических компонентов клетки, а также переключение метаболизма клетки с одного преобладающего пути на другой, например, с углеводного на жировой. Таким образом, дыхательный обмен одновременно составляет ведущее звено потока веществ, объединяющего метаболические пути расщепления и синтеза углеводов, белков, жиров, нуклеиновых кислот.
Многоклеточные организмы состоят из клеток, имеющих принципиально одинаковое строение. Однако форма, размеры и структура клеток зависят от функций, которые они выполняют. Например, мышечные клетки удлиненные, клетки эпителиальной ткани расположены на базальной мембране, плотно прилегают друг к другу, межклеточное вещество почти отсутствует. Нервные клетки благодаря большому количеству отростков получили звездчатую форму. Лейкоциты подвижны, округлой формы, могут приобретать амебоиднои формы и т.д. Причем функционально специализированные клетки разных типов и видов имеют сходные структуру, форму и размеры. Таким образом, клетки животных очень разнообразны по размерам, структуре и функциям, которые они выполняют. Однако все клетки обязательно должны содержать основные компоненты: цитоплазматическую мембрану, цитоплазму и ядро (за исключением эритроцитов и тромбоцитов, в которых ядро отсутствует).
В процессе дифференцировки менее специализированная клетка становится более специализированной. Например, эмбриональная стволовая клетка «превращается» в клетку эктодермы. Деление и дифференцировка — основные процессы, путем которых одиночная клетка (зигота) развивается в многоклеточный организм, содержащий самые разнообразные виды клеток. Дифференцировка меняет функцию клетки, ее размер, форму и метаболическую активность. Достигается это изменениями в экспрессии генов, в то время как ДНК остается неизменной.
Общее название для всех клеток, еще не достигших окончательного уровня специализации (то есть способных дифференцироваться) — стволовые клетки. Степень дифференцированости клетки (ее «потенция к развитию») называется потентностью. Клетки, способные дифференцироваться в любую клетку взрослого организма, называются плюрипотентными. Зигота и последуюшие бластомеры являются тотипотентными так как они могут дифференцироваться в любую клетку, в том числе и во внешние эмбриональные ткани.
Самая первая дифференцировка в процессе развития эмбриона происходит, когда из 32 тотипотентных клеток, на которые поделилась зигота, формируются два разных слоя: внутренний эмбриобласт и внешний трофобласт. Эмбриобласт дает начало плюрипотентным эмбриональным стволовым клеткам, из которых потом формируется весь организм. Трофобласт становится плацентой. По мере развития эмбриона клетки становятся все более специализированными (мультипотентные, унипотентные) пока не станут окончательно дифференцировавшими клетками, обладающими конечной функцией, как например мышечные клетки. В организме человека насчитывается порядка 220 различных типов клеток.
Небольшое количество клеток во взрослом организме сохраняют мультипотентность. Они используются в процессе естественного обновления клеток крови, кожи и др., а также для замещения поврежденных тканей. Так как эти клетки обладают двумя основными функциями стволовых клеток — способность обновляться, поддерживая мультипотентность, и способность дифференцироваться — их называют взрослыми стволовыми клетками.