Гидромуфта, гидротрансформатор, вариатор. Назначение, принцип действия
Гидромуфты.
Гидродинамические муфты (гидромуфты) нашли широкое применение в качестве составной части привода различных машин. Трудно назвать какую-либо отрасль промышленности и техники, в которых не использовались бы гидромуфты. В первую очередь это относится к горнорудной, химической, металлургической, нефтедобывающей и лесотехнической промышленности. Гидромуфты используются также в приводах широкого класса машин строительной, строительно-дорожной и транспортной техники.
Гидромуфты составляют неотъемлемую часть таких машин как ленточные, цепные скребковые и пластинчатые конвейеры, элеваторы, осевые вентиляторы и дымососы, питательные насосы и газовые турбины, дробилки и мельницы различных типов, роторные экскаваторы, дорожные катки, бетоносмесители, барабанные сушилки и центрифуги. Нельзя не упомянуть автомобили, трактора и железнодорожные локомотивы, в которых гидромуфты входят в состав гидромеханических коробок.
В 1910г. профессор Феттингер (Германия) предложил изъять направляющий аппарат из им же созданного гидротрансформатора. Таким образом, был сделан шаг от более сложной гидродинамической передачи к более простой, что и явилось началом создания гидромуфт. Несмотря на многообразие появившихся позднее конструкций гидромуфт, принципиально их рабочая часть сохранилась в том виде, в каком предложил ее Феттингер.
На рис.1 схематично в меридиональном сечении показана гидромуфта , имеющая ведущее лопастное насосное колесо центробежного типа 1(насос) и ведомое лопастное колесо, выполняющее функцию реактивной турбины 2(турбина). Оба колеса имеют, как правило, плоские радиальные лопатки 3 и 4. К насосу 1 присоединен вращающийся при работе корпус 5. Диски 6 и 7 насоса и турбины выполнены в виде чаш с криволинейными образующими. В сововокупности с межлопастными каналами торообразная часть полости гидромуфты, заключенная между чашами насоса и турбины, является рабочей полостью. Между торцами колес имеется небольшой осевой зазор, благодаря чему возможно вращение одного колеса относительно другого. Замкнутая полость гидромуфты заполняется рабочей жидкостью (РЖ), в качестве которой используются чаще всего минеральные маловязкие масла. В пожароопасных условиях применяются вода и водные эмульсии, а также трудновоспламеняемые синтетические масла.
В приводном блоке насос соединяется валом 8 с двигателем, а турбина валом 9 с механической передачей. При включении двигателя насос своей лопастной системой увлекает во вращение РЖ и, отбрасывая к периферии рабочей полости, направляет ее на лопатки турбины. В турбине кинетическая энергия РЖ, запасенная в насосе, преобразуется в механическую энергию вращения, необходимую для преодоления сил сопротивления движению и инерции маховых масс машины. РЖ, протекая в направлении оси вращения вдоль лопаток, воздействует на них и, отдав энергию, всасывается насосом на его наименьшем радиусе. И вновь РЖ "заряжается" в насосе новой порцией энергии. Процесс передачи и преобразования энергии от насоса к турбине происходит при работе гидромуфты непрерывно, и замкнутая циркуляция РЖ постоянно обеспечивает при этом силовую связь между колесами.
В гидромуфте (гидропередача без внешней опоры) момент на турбине всегда равен моменту на насосе, но передача энергии в ней происходит с определенными потерями, характеризуемыми в рабочем режиме значением К.П.Д. Поскольку моменты колес раны, то К.П.Д. численно равен отношению частоты вращения турбины n2 к частоте вращения насоса n1, т.е. передаточному отношению i ( i= n2/n1). Крутящий момент гидромуфты передается всегда при некотором отставании скорости турбины от скорости насоса. Это значит, что гидромуфта работает со скольжением Sг = (n1-n2)/ n1= 1-i. Скольжение отображает долю потерь мощности, идущих на нагрев РЖ и деталей гидромуфты.
Основные функциональные особенности гидромуфт.
При использовании гидромуфт привод машин приобретает целый ряд положительных свойств, из которых наиболее важными являются:
- страгивание с места с нулевыми значениями начального момента и ускорения, а также плавный разгон машин до рабочей скорости,
- предохранение приводного двигателя и механической трансмиссии от недопустимых перегрузок при резком торможении и пуске,
- возможность замены сложных электродвигателей с фазным ротором на простые и более надежные короткозамкнутые двигатели с обеспечением благоприятных условий их пуска под нагрузкой, в том числе и при большом моменте инерции машины,
- суммирование мощности нескольких двигателей, работающих на общий исполнительный орган при равномерном распределении нагрузки на эти двигатели, и возможность их поочередного запуска,
- стабильность и автоматичность срабатывания при заданном значении предельного момента и самовосстанавливаемость рабочего режима при устранении перегрузки,
- возможность гидродинамического и генераторного торможения машины, а также ее торможения противовращением при реверсировании двигателя,
- демпфирование и гашение крутильных колебаний крутящего момента и скорости вращения широкого спектра частот, имеющих место при работе многих машин.
К этому целесообразно добавить также такие особенности как высокий К.П.Д. гидромуфты (0,96-0,98), простота конструкции и настройки, отсутствие силовых пар трения, передающих крутящий момент. Изменение наполнения РЖ и введение в полость гидромуфты простого дросселирующего диска позволяют расширить диапазон передаваемой мощности.
Гидромуфты подразделяются на регулируемые и замкнутые.
Регулируемые гидромуфты предназначены, как правило, для относительно неглубокого (до 30-40%) регулирования частоты вращения ведомого вала привода. Наиболее экономичным такое регулирование является лишь для машин, у которых мощность нагрузки в процессе работы изменяется пропорционально кубу частоты вращения турбины, т.е. N2=(i3) Nн (Nн- номинальная мощность при полной скорости и n1=const.). К таким машинам относятся мощные (до15тыс.квт) центробежные насосы, турбогенераторы, вентиляторы. Менее экономичным регулирование с помощью гидромуфт является в случае, когда мощность изменяется пропорционально квадрату частоты вращения ,т.е. N2=(i2) Nн. Максимальные потери мощности Nпот. в первом случае составляют Nпот.= 0,148 Nн при i=0,666, а во втором случае 0,25 Nн- при i=0,5. Для многих лопастных машин регулирование гидромуфтой имеет ряд преимуществ по сравнению с другими способами регулирования скорости.
Гидротрансформатор
Гидродинамический трансформатор (гидротрансформатор, ГДТ) является частью гидромеханической трансмиссии, которая на современных автомобилях имеет электронное управление гидравликой и в обиходе называется автоматической.
Первый гидротрансформатор был запатентован в 1902 году Г. Феттингером и установлен через пять лет на быстроходном судне. В автомобилестроении это устройство первой применила в 1928 году шведская фирма "Лисхольм-Смит" для городских автобусов. В 1940 году гидротрансформатором стали оснащаться Oldsmobile, а затем и Cadillac.
Buick Roadmaster в 1947 году стал первым серийным легковым автомобилем с гидротрансформатором.
ГДТ находится между двигателем и автоматической коробкой перемены передач (АКПП), которая принципиально отличается устройством от простых механических. Он выполняет без вмешательства водителя две функции. Первая - функция сцепления, т. е. обеспечение передачи крутящего момента двигателя на АКПП. Вторую можно назвать функцией "дополнительной бесступенчатой коробки передач". Это образное выражение можно применить, исходя из особенностей работы гидротрансформатора, который, изменяя передаваемый им крутящий момент, позволяет увеличивать передаточные числа АКПП (см. "Работа ГДТ на автомобиле").
Устройство ГДТ
Схематично ГДТ (см. рисунок) можно представить в виде трех лопастных колес (насосное, турбинное и колесо реактора), вращающихся соосно и находящихся в одном корпусе (фото 1), заполненном рабочей жидкостью.
Насосное колесо (насос) жестко соединено с корпусом ГДТ, который приводится во вращение коленчатым валом двигателя.
Турбинное колесо (турбина) имеет шлицевое соединение с первичным валом коробки передач.
Колесо реактора (реактор) соединено с корпусом коробки передач через муфту свободного хода, что позволяет ему быть неподвижным или вращаться относительно насоса и турбины в зависимости от режима работы ГДТ.
Рабочая жидкость - жидкость для гидромеханических трансмиссий, нагнетаемая специальным насосом (не путать с насосным колесом) во внутреннюю полость корпуса ГДТ.
Принцип работы ГДТ
Коленчатый вал двигателя вращает корпус гидротрансформатора, который жестко связан с маховиком. Насосное колесо, конструктивно объединено с его корпусом и всегда имеет число оборотов, равное оборотам двигателя.
При вращении коленчатого вала насосное колесо начинает вращаться вместе с жидкостью, полностью заполняющей корпус ГДТ. Лопасти насосного колеса устремляют рабочую жидкость на лопасти турбины. Вслед за движением насосного колеса, под действием жидкости начинает двигаться турбинное. При малом числе оборотов происходит отставание вращения турбинного колеса от насосного. По мере увеличения числа оборотов проскальзывание уменьшается, к.п.д. ГДТ возрастает.
Между насосным и турбинным колесами расположен реактор. На современных моделях ГДТ он устанавливается на обгонной муфте, которая позволяет расклинивать его (см. устройство) и тем самым еще больше увеличивать к.п.д ГДТ.
Жидкость, от насосного колеса попадая через лопасти турбины на реактор, может передать больший момент, чем развивает двигатель. Этот эффект и определил название гидротрансформатора, т.е. он трансформирует (передает, усиливает) крутящий момент. Неподвижный реактор нужен только до тех пор, пока скорость вращения турбины отстает от скорости вращения насосного колеса на 15-25%. При выравнивании скоростей колес реактор становится помехой и снижает к.п.д. ГДТ, поэтому муфта свободного хода разблокирует его и он будет вращаться.