Лекция 2: Информация, ее представление и измерение

Лекция 1: ВВЕДЕНИЕ. ИСТОРИЯ, ПРЕДМЕТ, СТРУКТУРА ИНФОРМАТИКИ

Хотя информатика и считается достаточно молодой наукой (по отношению ко многим другим отраслям знания ), но предпосылки к ее зарождению – достаточно древние.

При рассмотрении вопроса об истории информатики будем исходить из первых признаков и событий информационного обмена, осознавая, что об информатике как о науке тогда речь не шла.

Пример. Первый предмет для ведения счета обнаружен в Чехии (волчья кость с зарубками) и относится к 30000 г. до н.э.

Наиболее важной и ранней предпосылкой к информационному обмену стала речь, а позже – самые первые знаковые системы (живопись, музыка, графика, танец, обряды и др.).

Затем появилась письменность: вначале она была рисуночной, иероглифической, с использованием носителей различного типа (камень, глина, дерево и т.д.).

Пример. В Древнем Египте около 3000 г. до н.э. появилось иероглифическое письмо на камне, а затем и иератическое (не иероглифическое) письмо на папирусе. Бронзовый век дал нам идеограммы – изображения повторяющихся систем понятий, которые в конце IV века до н.э. превратились в рисуночное, иероглифическое письмо.

Развиваются различные системы, счета и механизации (это, как известно, – предпосылка автоматизации) счета.

Пример. В Древнем Вавилоне около 8000 г. до н.э. использовали различные эталоны меры (каменные шары, конусы, цилиндры и т.д.). Там же около 1800 г. до н.э. начали использовать шестидесятеричную систему счисления. Древние римляне положили в основу счисления иероглифическое обозначение пальцев рук (все символы этой системы счисления можно изобразить с помощью пальцев рук). Счет на основе пальцев использовался достаточно долго и дал нам десятичную систему счисления, применяемую во всем мире.

От рисунков на камне (пиктограмм) осуществляется переход к рисункам на дощечках, глиняных пластинах (клинописи), от клинописи – к слоговому (вавилонскому) письму, от вавилонского письма – к греческому, от греческого и латинского – к основным западным письменным системам, к возникновению пунктуационного письма.

На основе латинской и греческой письменности разрабатываются терминологические системы для различных областей знания – математики, физики, медицины, химии и т.д. Развивается математический (алгебраический) язык – основа формализации различных знаний. Распространение математической символики и языка приводит к развитию всего естествознания, так как появился адекватный и удобный аппарат для описания и исследования различных явлений.

Пример. Появляются символы дифференцирования, интегрирования, которые потом берутся "на вооружение" физикой, химией и другими науками.

Совершенствуются различные системы визуализации информации – карты, чертежи, пирамиды, дворцы, акведуки, механизмы и др. Пример. Механизмы штурма крепостей были достаточно сложны, древние водопроводные системы работают и до сих пор.

С появлением папируса повышается информационная емкость, актуализируется новое свойство информации – сжимаемость.

С появлением бумаги появляется эффективный носитель информации – книга, а изобретение печатного станка (Гуттенберга) приводит к тиражированию информации (новое свойство информационного обмена). Появляется достаточно адекватный (на тот период) инструмент массовой информационной коммуникации. Развиваются элементы виртуального мышления (например, в картинах известных художников).

Распространению информации способствует также появление и развитие библиотек, почты, университетов – центров накопления информации, знаний, культуры в обществе.

Пример. Появились централизованные хранилища информации, например, в столице Хеттского государства во дворце хранилось около 20 тыс. глиняных клинописных табличек.

Происходит массовое тиражирование информации, рост профессиональных знаний и развитие информационных технологий. Появляются первые признаки параллельной (по пространству и по времени) передачи и использования информации, знаний.

Пример. Изменение информационных свойств накладывает отпечаток и на все производство, на производственные и коммуникационные отношения, например, происходит разделение (по пространству, по времени) труда, появляется необходимость в развитии торговли, мореходства, изучении различных языков.

Дальнейший прогресс и возникновение фотографии, телеграфа, телефона, радио, кинематографа, телевидения, компьютера, компьютерной сети, сотовой связи стимулируют развитие массовых и эффективных информационных систем и технологий.

В отраслях науки формируются языковые системы: язык химических формул, язык физических законов, язык генетических связей и др..

С появлением компьютера стало возможным хранение, автоматизация и использование профессиональных знаний программ: баз данных, баз знаний, экспертных систем и т.д..

Пример. Персональный компьютер впервые становится средством и стимулятором автоформализации знаний и перехода от "кастового" использования ЭВМ (исключительно "кастой программистов") к общему, "пользовательскому" использованию.

Информатика от "бумажной" стадии своего развития переходит к "безбумажной", электронной стадии развития и использования.

В конце двадцатого века возник так называемый информационный кризис, "информационный взрыв", который проявился в резком росте объема научно-технических публикаций. Возникли большие сложности восприятия, переработки информации, выделения нужной информации из общего потока и др. В этих условиях появилась необходимость в едином и доступном мировом информационном пространстве, в развитии методов и технологии информатики, в развитии информатики как методологии актуализации информации, в формировании базовых технологий и систем и пересмотре роли информатики в обществе, науке, технологии.

Мир, общество начали рассматриваться с информационных позиций. Это время лавинообразного увеличения объема информации в обществе, ускорения их применения на практике, повышения требований к актуальности, достоверности, устойчивости информации. XXI век можно считать веком "информационного сообщества", единого и доступного мирового информационного пространства (поля), которое будет постоянно улучшать как производительные силы и производственные отношения, так и человеческую личность, общество.

Появление информатики как науки базируется на индустрии сбора, обработки, передачи, использования информации, на продуктах развития математики, физики, управления, техники, лингвистики, военной науки и других наук.

Информатика – фундаментальная научная и образовательная область, которая не может ограничиться рамками инженерных, пользовательских трактовок, рамками процедурного программирования, имея мощный формальный аппарат для глубокого изучения явлений и систем, их практической интерпретации, усиления междисциплинарных связей.

Информатика уже прошла этап "интуитивного (в своих понятиях, определениях, целях) развития", достаточно "теоретизировалась" и превратилась в полноценную фундаментальную естественнонаучную дисциплину, как, скажем, математика или физика.

Пример. В эпоху введения информатики в число образовательных дисциплин использовался больше программистский и пользовательский подход. Информатика, как правило, отождествлялась с процедурным программированием и решением задач на ЭВМ. Преподавалась информатика в школах и вузах – соответственно.

Если информатика рассматривается с узких позиций ее применения, применимости, то она выступает как техническая, технологическая среда общества, как средство обеспечения, например, коммуникационных потребностей общества.

Если информатика рассматривается с позиции передачи знаний, то она выступает как общекультурная среда и средство познания природы и общества.

Оба подхода должны быть взаимосвязаны.

Абсолютизация первого подхода приводит к различным технократическим перекосам, утопиям.

Абсолютизация второго подхода может привести к излишнему формализму и идеализации.

Дадим теперь рабочее (в данном курсе) определение информатики. Это определение не является ни полным, ни точным, ни формальным (дать такое определение – невозможно), но для вводного курса, как кажется автору, – вполне приемлемое.

Информатика – это междисциплинарная, методологическая наука об информационных процессах, о моделях, об алгоритмах и алгоритмизации, о программах и программировании, об исполнителях алгоритмов и различных исполняющих системах об их использовании в обществе, в природе, в познании.

Термин " информатика " (l’informatique) был введен французскими учеными и означает науку обработки информации (первоначально это была информация научно-технического, библиотечного характера) с помощью различных автоматических средств.

Во многих странах больше используется термин "computer science" (компьютерная наука, наука о компьютерах, точнее, наука о преобразовании информации с помощью компьютеров).

Предмет информатики точно невозможно определить – он сложный, многосторонний, динамичный.

Можно отметить три основные ветви информатики: теоретическую, практическую и техническую. Отметим, что деление информатики как науки и человеческой деятельности на те или иные части зависит от целей, задач, ресурсов рассматриваемой проблемы и часто оно бывает условным.

Теоретическая информатика ( brainware, "мозговое" обеспечение) изучает теоретические проблемы информационных сред.

Практическая, прикладная информатика ( software, "гибкое", программное обеспечение) изучает практические проблемы информационных сред.

Техническая информатика ( hardware, "тяжелое", аппаратное обеспечение) изучает технические проблемы информационных сред.

Пример. Задача построения математической модели прогноза кредитного риска банка – это задача теоретической информатики и экономики (естественно). Построение алгоритма прогноза по этой модели – задача теоретической информатики. Разработка компьютерной программы (комплекса программ) для прогноза риска – задача практической информатики.

Часто (особенно, в области практической информатики) говорят о предметной информатике, например, о медицинской информатике, физической информатике, компьютерной физике и т.д.

Пример. Определим предметы химической, медицинской, физической информатики. Химическая информатика изучает информационные процессы и системы в химических средах, проблемы управления в химических информационных структурах. Медицинская информатика изучает проблемы информационных процессов, а также управления в медицинских информационных системах. Физическая информатика (иногда интерпретируемая как компьютерная физика) изучает проблемы информационных процессов, управления, вопросы самоорганизации, хаоса и порядка в открытых физических системах.

В любую предметную информатику, помимо предметных аспектов самой области, входят социально-правовые, эколого-экономические, гуманитарно-образовательные и философские аспекты.

Предметная область науки " информатика " – информационные системы, модели, языки их описания, технологии их актуализации.

Эти информационные процессы происходят как в живых организмах, так и в технических устройствах, в различных институтах общества, в индивидуальном и общественном сознании.

Информатика, как и математика, является наукой для описания и исследования проблем других наук. Она помогает прокладывать и усиливать междисциплинарные связи, исследовать проблемы различных наук с помощью своих идей, методов, технологий.

Фундаментальность информатике придает не только широкое и глубокое использование математики и других естественных наук, формальных методов и средств, но и общность, и фундаментальность ее результатов, их универсальная методологическая направленность в производстве знаний общества.

Мировоззренческая роль информатики состоит, в частности, в том, что она помогает вникать (особенно, в информационную) суть явлений, происходящих в окружающем нас мире, например, скрытых, не лежащих на поверхности, выявлять, описывать и исследовать как внешние, так и внутренние связи системы.

Воспитательная роль информатики состоит, в частности, в выработке исследовательского, творческого, алгоритмического подхода к делу, настойчивости, терпения и трудолюбия, аккуратности, логичности и строгости суждений, развитии умений выделять главное и игнорировать второстепенное, не влияющее на суть проблемы, ставить и исследовать новые задачи, использовать информационные технологии при решении разнообразных задач и др.

Культурная роль информатики состоит в частности в том, что повышение информационной и компьютерной культуры естественным образом, в соответствии с функциями информатики содействует повышению и профессиональной, и общей культуры (мышления, поведения, выбора). Информатика – это своего рода особая культура и искусство информационно-логического представления знаний.

Эстетическая роль информатики эстетика (наука о прекрасном) состоит, в частности, в сведении разрозненных элементов и связей исследуемой проблемы в целостную композицию, обладающую эстетическими качествами (красота, обаяние, цвет, форма, пропорция, симметрия, гармония, единство частей целого, удовольствие и др.), в сведении целого к ее частям с целью повышения эстетических качеств восприятия (в том числе и виртуального) процесса, явления.

Благодаря информатике развиваются языки наук, происходит их взаимообогащение, следовательно, и сами науки развиваются.

Информатика также обогащается новыми идеями и приложениями вследствие этого процесса, развивает и индустриализирует процесс получения, хранения и использования знаний.

Информатика широко используется как в традиционных, естественнонаучных областях (физика, биология, экономика и др.), так и в гуманитарных – истории, лингвистике, психологии, социологии и др.

Лекция 2: Информация, ее представление и измерение

Понятие "информация" имеет различные трактовки в разных предметных областях. Например, информация может пониматься как:

· абстракция, абстрактная модель рассматриваемой системы (в математике);

· сигналы для управления, приспособления рассматриваемой системы (в кибернетике);

· мера хаоса в рассматриваемой системе (в термодинамике);

· вероятность выбора в рассматриваемой системе (в теории вероятностей);

· мера разнообразия в рассматриваемой системе (в биологии) и др.

Рассмотрим это фундаментальное понятие информатики на основе понятия "алфавит" ("алфавитный", формальный подход). Дадим формальное определение алфавита.

Алфавит – конечное множество различных знаков, символов, для которых определена операция конкатенации (приписывания, присоединения символа к символу или цепочке символов); с ее помощью по определенным правилам соединения символов и слов можно получать слова (цепочки знаков) и словосочетания (цепочки слов ) в этом алфавите (над этим алфавитом ).

Буквой или знаком называется любой элемент x алфавита X, где Лекция 2: Информация, ее представление и измерение - student2.ru . Понятие знака неразрывно связано с тем, что им обозначается ("со смыслом"), они вместе могут рассматриваться как пара элементов (x, y), где x – сам знак, а y – обозначаемое этим знаком.

Пример. Примеры алфавитов: множество из десяти цифр, множество из знаков русского языка, точка и тире в азбуке Морзе и др. В алфавите цифр знак 5 связан с понятием "быть в количестве пяти элементов".

Конечная последовательность букв алфавита называется словом в алфавите (или над алфавитом ).

Длиной |p| некоторого слова p над алфавитом Х называется число составляющих его букв.

Слово (обозначаемое символом Лекция 2: Информация, ее представление и измерение - student2.ru ) имеющее нулевую длину, называется пустым словом: | Лекция 2: Информация, ее представление и измерение - student2.ru | = 0.

Множество различных слов над алфавитом X обозначим через S(X) и назовем словарным запасом (словарем) алфавита (над алфавитом ) X.

В отличие от конечного алфавита, словарный запас может быть и бесконечным.

Слова над некоторым заданным алфавитом и определяют так называемые сообщения.

Пример. Слова над алфавитом кириллицы – "Информатика", "инто", "ииии", "и". Слова над алфавитом десятичных цифр и знаков арифметических операций – "1256", "23+78", "35–6+89", "4". Слова над алфавитом азбуки Морзе – ".", ". . –", "– – –".

В алфавите должен быть определен порядок следования букв (порядок типа "предыдущий элемент – последующий элемент"), то есть любой алфавит имеет упорядоченный вид X = {x1, x2, …, xn} .

Таким образом, алфавит должен позволять решать задачу лексикографического (алфавитного) упорядочивания, или задачу расположения слов над этим алфавитом, в соответствии с порядком, определенным в алфавите (то есть по символам алфавита ).

Информация – это некоторая упорядоченная последовательность сообщений, отражающих, передающих и увеличивающих наши знания.

Информация актуализируется с помощью различной формы сообщений – определенного вида сигналов, символов.

Информация по отношению к источнику или приемнику бывает трех типов: входная, выходная и внутренняя.

Информация по отношению к конечному результату бывает исходная, промежуточная и результирующая.

Информация по ее изменчивости бывает постоянная, переменная и смешанная.

Информация по стадии ее использования бывает первичная и вторичная.

Информация по ее полноте бывает избыточная, достаточная и недостаточная.

Информация по доступу к ней бывает открытая и закрытая.

Есть и другие типы классификации информации.

Пример. В философском аспекте информация делится на мировоззренческую, эстетическую, религиозную, научную, бытовую, техническую, экономическую, технологическую.

Основные свойства информации:

· полнота;

· актуальность;

· адекватность;

· понятность;

· достоверность;

· массовость;

· устойчивость;

· ценность и др.

Количество информации – число, адекватно характеризующее разнообразие (структурированность, определенность, выбор состояний и т.д.) в оцениваемой системе.

Количество информации часто оценивается в битах, причем такая оценка может выражаться и в долях бит (так как речь идет не об измерении или кодировании сообщений ).

Любые сообщения измеряются в байтах, килобайтах, мегабайтах, гигабайтах, терабайтах, петабайтах и эксабайтах, а кодируются, например, в компьютере, с помощью алфавита из нуля и единицы, записываются и реализуются в ЭВМ в битах.

Приведем основные соотношения между единицами измерения сообщений:

1 бит ( bi nary digi t – двоичное число) = 0 или 1,

1 байт 8 бит,

1 килобайт (1Кб) = 213 бит,

1 мегабайт (1Мб) = 223 бит,

1 гигабайт (1Гб) = 233 бит,

1 терабайт (1Тб) = 243 бит,

1 петабайт (1Пб) = 253 бит,

1 эксабайт (1Эб) = 263 бит.

Мера информации – критерий оценки количества информации. Обычно она задана некоторой неотрицательной функцией, определенной на множестве событий и являющейся аддитивной, то есть мера конечного объединения событий (множеств) равна сумме мер каждого события.

Для измерения информации используются различные подходы и методы, например, с использованием меры информации по Р. Хартли и К. Шеннону.

В конце 40-х годов XX века один из основателей кибернетики, американский математик Клод Шеннон, предложил вероятностный подход к измерению количества информации.

Сообщение, уменьшающее неопределенность знаний человека в два раза, несет для него 1 единицу информации. В качестве элементарной единицы измерения количества информации принят 1 бит.

Пусть в некотором сообщении содержатся сведения о том, что произошло одно из N равновероятных событий. Тогда количество информации, заключенное в этом сообщении , - х бит и число N связаны формулой Хартли

Лекция 2: Информация, ее представление и измерение - student2.ru

Например, сообщение о результате бросания монеты (количество равновероятных исходов равно 2) содержит х=1 бит информации (2х = 2). Пусть в барабане для розыгрыша лотереи содержится 32 шара. Сколько информации содержит сообщение о первом выпавшем номере ? Поскольку появление любого из 32 шаров равновероятно, то 2х = 32 и х=5 бит. Рассмотрим еще один пример.

При бросании игральной кости используют кубик с шестью гранями. Сколько бит информации получает каждый игрок при бросании кубика ? Так как выпадение каждой грани равновероятно, то 2х = 6, откуда х=log26 » 2,585 бит.

Определим теперь, являются ли равновероятными сообщения "первой выйдет из дверей здания женщина" и "первым выйдет из дверей здания мужчина". Однозначно ответить на этот вопрос нельзя. Все зависит от того, о каком именно здании идет речь. Если это, например, станция метро, то вероятность выйти из дверей первым одинакова для мужчины и женщины, а если это военная казарма, то для мужчины эта вероятность значительно выше, чем для женщины.

Для задач такого рода американский учёный Клод Шеннон предложил в 1948 г. другую формулу определения количества информации, учитывающую возможную неодинаковую вероятность сообщений в наборе.

Лекция 2: Информация, ее представление и измерение - student2.ru

где pi — вероятность того, что именно i-е сообщение выделено в наборе из N сообщений

Легко заметить, что если вероятности pi равны, то каждая из них равна 1/N, и формула Шеннона превращается в формулу Хартли.

В качестве примера определим количество информации, связанное с появлением каждого символа в сообщениях, записанных на русском языке. Будем считать, что русский алфавит состоит из 33 букв и знака “пробел” для разделения слов. По формуле Хартли x= log234 » 5,09 бит. Однако в словах различные буквы встречаются неодинаково часто. Вероятности частоты употребления различных букв вычисляются на основе анализа очень больших по объему текстов. Если это учесть, то по формуле Шеннона получим H=4,72. Вычисления показывают, что при равновероятных событиях мы получаем большее количество информации, чем при неравновероятных событиях.

При вычислении вероятности наступления какого-то события часто приходится вычислить количество различных исходов проведения опытов. При этом используют различные формулы комбинаторики – раздела дискретной математики, в котором решаются задачи выбора и расположения элементов некоторого множества в соответствии с некоторыми правилами.

Задача 1. На вершину горы ведет 7 дорог. Сколькими способами турист может подняться на гору и спуститься с нее если подъем и спуск осуществляется разными путями ?

Задача 2. В группе 30 человек. Необходимо выбрать старосту и профорга. Сколькими способами можно это сделать ?

Задача 3. Сколько существует трехзначных чисел с разными цифрами ?

Задача 4. Сколькими способами можно разместить на полке 4 книги ?

Правило произведения. Если из некоторого конечного множества
1-й объект можно выбрать k1 способами,

2-й объект можно выбрать k2 способами,

……………………………………………..

n-й объект можно выбрать kn способами.

тогда произвольный набор, перечисленных n объектов, из данного множества можно выбрать k1× k2 … kn способами.

Для нахождения числа различных перестановок из n элементов используют формулу Pn = n! Например, из цифр 3,5,7 можно составить 6 перестановок: 357, 375, 537, 573, 753, 735.

Задача 5. Сколько шестизначных чисел, кратных пяти, можно составить из цифр 1,2,3,4,5,6 при условии, что в числе цифры не повторяются ?

Задача 6. Сколькими способами могут расположиться в турнирной таблице 10 команд, если известно, что никакие две команды не набрали поровну очков ?

Пусть имеется некоторое множество, содержащее n элементов. Все элементы такого множества можно занумеровать, т.е. каждому элементу поставить в соответствие одно из натуральных чисел 1,2,…, n. Такие множества называются упорядоченными.

Любой упорядоченный набор из k элементов n-элементного множества называют размещением Лекция 2: Информация, ее представление и измерение - student2.ru из n элементов по k. Все эти подмножества отличаются друг от друга или составом элементов, или порядком их распределения. Но число элементов во всех этих подмножествах равно k.

Например, пусть Х={a,b,c}. Тогда по одному элементу можно образовать три размещения: (a), (b), (c); по два – шесть размещений: (a,b), (b,a), (a,c), (c,a), (b,c), (c,b). Для определения числа Лекция 2: Информация, ее представление и измерение - student2.ru размещений из n элементов по k используют формулу

Лекция 2: Информация, ее представление и измерение - student2.ru = n(n-1)…(n – k +1) = Лекция 2: Информация, ее представление и измерение - student2.ru

Задача 7. В турнире принимают участие 8 команд. Сколько различных предсказаний относительно распределения трех первых мест можно сделать ?

Задача 8. В семестре изучаются 14 предметов. Сколькими способами можно составить расписание занятий на понедельник, если в этот день недели должно быть 5 различных предметов ?

Задача 9. Набирая номер телефона, абонент забыл две последние цифры и, помня лишь, что эти цифры различны, стал набирать их наудачу. Сколько вариантов ему надо перебрать, чтобы набрать нужный номер ?

Задача 10. Назовите все возможные комбинации из двух различных нот (всего нот семь: до, ре, ми, фа, соль, ля, си).


Иногда возникает необходимость не учитывать порядок элементов, входящих в размещение. Например, необходимо составить различные произведения из чисел 3,5,7. Таких произведений будет всего три: 3ž5, 3ž7, 5ž7, так как 3ž5=5ž3 и мы порядок не учитываем.

Количество k-элементных подмножеств n-элементного множества называют сочетаниями и обозначают Лекция 2: Информация, ее представление и измерение - student2.ru . Порядок элементов в подмножестве не имеет значения. Обратите внимание: отличие Лекция 2: Информация, ее представление и измерение - student2.ru от Лекция 2: Информация, ее представление и измерение - student2.ru : в сочетаниях не могут быть два одинаковых подмножества {a,b} и {b,a}.Два различных сочетания отличаются составом входящих в них элементов. Например, ниже выписаны всевозможные сочетания, составленные из 5 элементов 1,2,3,4 и 5 по 3 (столькими способами Вы можете выбрать 3 книги из 5): 123, 124, 125, 134, 135, 145, 234, 235, 245, 345

Число сочетаний из n элементов по k равно Лекция 2: Информация, ее представление и измерение - student2.ru

Задача 11. Сколько экзаменационных комиссий, состоящих из 7 членов, можно образовать из 14 преподавателей ?

Задача 12. В турнире принимали участие n шахматистов, и каждые 2 шахматиста встретились 1 раз. Сколько партий было сыграно ?

Задача 13. Поезд находится на одном из восьми путей. Сколько бит информации содержит сообщение о том, где находится поезд ?

Задача 14. Сколько бит информации получает игрок о масти при случайном вытаскивании карты из колоды ?

Задача 15. Тетрадь лежит на одной из двух полок - верхней или нижней. Сколько бит несет в себе сообщение, что она лежит на нижней полке?

Задача 16. Шарик находится в одной из 32 урн. Сколько единиц информации будет содержать сообщение о том, где он находится?

Задача 17. После реализации одного из равновозможных событий получили количество информации равное 10 бит. Какое количество возможных событий было первоначально ?

Задача 18. Какое количество информации получит первый игрок после первого хода второго игрока в игре "крестики - нолики" на поле 4 х 4 ?

Методы получения информации можно разбить на три большие группы.

1. Эмпирические методы или методы получения эмпирических данных.

2. Теоретические методы или методы построения различных теорий.

3. Эмпирико-теоретические методы (смешанные) или методы построения теорий на основе полученных эмпирических данных об объекте, процессе, явлении.

Охарактеризуем кратко эмпирические методы.

1. Наблюдение – сбор первичной информации об объекте, процессе, явлении.

2. Сравнение – обнаружение и соотнесение общего и различного.

3. Измерение – поиск с помощью измерительных приборов эмпирических фактов.

4. Эксперимент – преобразование, рассмотрение объекта, процесса, явления с целью выявления каких-то новых свойств.

Кроме классических форм их реализации, в последнее время используются опрос, интервью, тестирование и другие.

Охарактеризуем кратко эмпирико-теоретические методы.

1. Абстрагирование – выделение наиболее важных для исследования свойств, сторон исследуемого объекта, процесса, явления и игнорирование несущественных и второстепенных.

2. Анализ – разъединение целого на части с целью выявления их связей.

3. Декомпозиция – разъединение целого на части с сохранением их связей с окружением.

4. Синтез – соединение частей в целое с целью выявления их взаимосвязей.

5. Композиция — соединение частей целого с сохранением их взаимосвязей с окружением.

6. Индукция – получение знания о целом по знаниям о частях.

7. Дедукция – получение знания о частях по знаниям о целом.

8. Эвристики, использование эвристических процедур – получение знания о целом по знаниям о частях и по наблюдениям, опыту, интуиции, предвидению.

9. Моделирование (простое моделирование), использование приборов – получение знания о целом или о его частях с помощью модели или приборов.

10. Исторический метод – поиск знаний с использованием предыстории, реально существовавшей или же мыслимой.

11. Логический метод – поиск знаний путем воспроизведения частей, связей или элементов в мышлении.

12. Макетирование – получение информации по макету, представлению частей в упрощенном, но целостном виде.

13. Актуализация – получение информации с помощью перевода целого или его частей (а следовательно, и целого) из статического состояния в динамическое состояние.

14. Визуализация – получение информации с помощью наглядного или визуального представления состояний объекта, процесса, явления.

Кроме указанных классических форм реализации теоретико-эмпирических методов часто используются и мониторинг (система наблюдений и анализа состояний), деловые игры и ситуации, экспертные оценки (экспертное оценивание), имитация (подражание) и другие формы.

Охарактеризуем кратко теоретические методы.

1. Восхождение от абстрактного к конкретному – получение знаний о целом или о его частях на основе знаний об абстрактных проявлениях в сознании, в мышлении.

2. Идеализация – получение знаний о целом или его частях путем представления в мышлении целого или частей, не существующих в действительности.

3. Формализация – получение знаний о целом или его частях с помощью языков искусственного происхождения (формальное описание, представление).

4. Аксиоматизация – получение знаний о целом или его частях с помощью некоторых аксиом (не доказываемых в данной теории утверждений) и правил получения из них (и из ранее полученных утверждений) новых верных утверждений.

5. Виртуализация – получение знаний о целом или его частях с помощью искусственной среды, ситуации.

Информационная система – это система, в которой элементы, структура, цель, ресурсы рассматриваются на информационном уровне (хотя, естественно, имеются и другие уровни рассмотрения).

Суть задачи управления системой – отделение ценной информации от "шумов" (бесполезного, иногда даже вредного для системы возмущения информации ) и выделение информации, которая позволяет этой системе существовать и развиваться.

Наши рекомендации