ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 13

1. Опишите, какие числа в ЭВМ представляют в естественной форме? Обоснуйте особенности выполнения арифметических действий над числами в естественной форме. Приведите примеры выполнения операций сложения и вычитания над целыми числами, представленными: а) одним байтом; б) двумя байтами.

Машинным изображением числа называют его представление в разрядной сетке ЭВМ. В вычислительных машинах применяются две формы представления чисел:

естественная форма или форма с фиксированной запятой (точкой);

нормальная форма или форма с плавающей запятой (точкой);

Пример:

(естественная форма) 452,34 = 452340*10-3 = 0,0045234*105 = 0,45234*103(нормальная форма)

Всякое десятичное число, прежде чем оно попадает в память компьютера, преобразуется по схеме:

X10 → X2 = M1 × [102]r

После этого осуществляется ещё одна важная процедура:

мантисса с её знаком заменяется кодом мантиссы с её знаком;

порядок числа с его знаком заменяется кодом порядка с его знаком.

Указанные коды двоичных чисел - это образы чисел, которые и воспринимают вычислительные устройства. Каждому двоичному числу можно поставить в соответствие несколько видов кодов.

Существуют следующие коды двоичных чисел:

Прямой код;

Обратный код;

Дополнительный код.

Последние две формы применяются особенно широко, так как позволяют упростить конструкцию арифметико-логического устройства компьютера путем замены разнообразных арифметических операций операцией сложения.

Естественная форма

В форме с фиксированной запятой в разрядной сетке выделяется строго определенное число разрядов для целой и для дробной частей числа. Левый (старший) разряд хранит признак знака (0 – "+", 1 – "-") и для записи числа не используется.

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 13 - student2.ru

Сама запятая никак не изображается, но ее место строго фиксировано и учитывается при выполнении всех операций с числами. Независимо от положения запятой в машину можно вводить любые числа, т.к.

A = [A] · KА,

где А – произвольное число, [A] – машинное изображение числа в разрядной сетке, KА - масштабный коэффициент.

Естественная форма числа в неявном, условном виде реализуется формулой:

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 13 - student2.ru

т.е. число записывается только с помощью набора значащих цифр xj без явного указания их весов и знаков сложения между ними. Отсчет ведется от точки, которая обычно фиксируется между целой и дробной частями числа.

С фиксированной запятой числа изображаются в виде последовательности цифр с постоянным для всех чисел положением запятой, отделяющей целую часть от дробной(например, 32,54; 0,0036; –108,2). Форма представления чисел с фиксированной запятой упрощает аппаратную реализацию ЭВМ, уменьшает время выполнения машинных операций, однако при решении задач на машине необходимо постоянно следить за тем, чтобы все исходные данные, промежуточные и окончательные результаты находились в допустимом диапазоне представления. Если этого не соблюдать, то возможно переполнение разрядной сетки, и результат вычислений будет неверным. От этих недостатков в значительной степени свободны ЭВМ, использующие форму представления чисел с плавающей точкой, или нормальную форму. В современных компьютерах форма представления чисел с фиксированной запятой используется только для целых чисел.

Прямой код

Представление числа в привычной форме "знак"-"величина", при которой старший разряд ячейки отводится под знак, а остальные - под запись числа в двоичной системе, называется прямым кодом двоичного числа. Например, прямой код двоичных чисел 1001 и -1001 для 8-разрядной ячейки равен 00001001 и 10001001 соответственно.

Положительные числа в ЭВМ всегда представляются с помощью прямого кода. Прямой код числа полностью совпадает с записью самого числа в ячейке машины. Вообще, положительные числа в прямом, обратном и дополнительном кодах изображаются одинаково — двоичными кодами с цифрой 0 в знаковом разряде.

Например,

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 13 - student2.ru

Прямой код отрицательного числа отличается от прямого кода соответствующего положительного числа лишь содержимым знакового разряда. Но отрицательные целые числа не представляются в ЭВМ с помощью прямого кода, для их представления используется так называемый дополнительный код.

Прямой код двоичного числа(а это либо мантисса, либо порядок) образуется по такому алгоритму:

Определить данное двоичное число - оно либо целое (порядок), либо правильная дробь (мантисса).

Если это дробь, то цифры после запятой можно рассматривать как целое число.

Если это целое и положительное двоичное число, то вместе с добавлением 0 в старший разряд число превращается в код. Для отрицательного двоичного числа перед ним ставится единица.

Например,

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 13 - student2.ru

Обратный код

Обратный код положительного двоичного числа совпадает с прямым кодом.Для отрицательного числа все цифры числа заменяются на противоположные (1 на 0, 0 на 1), а в знаковый разряд заносится единица.

Например,

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 13 - student2.ru

Дополнительный код

Дополнительный код положительного числа равен прямому коду этого числа. Дополнительный код отрицательного числа m равен 2k - |m|, где k - количество разрядов в ячейке.Также дополнительный код отрицательного числа образуется путём прибавления 1 к обратному коду.

При представлении целых чисел со знаком старший (левый) разряд отводится под знак числа, и под собственно число остаётся на один разряд меньше.

Алгоритм получения дополнительного кода отрицательного числа:

модуль отрицательного числа представить прямым кодом в k двоичных разрядах;

значение всех бит инвертировать:все нули заменить на единицы, а единицы на нули(таким образом, #получается k-разрядный обратный код исходного числа);

к полученному обратному коду прибавить единицу.

Дополнительный код используется для упрощения выполнения арифметических операций. Если бы вычислительная машина работала с прямыми кодами положительных и отрицательных чисел, то при выполнении арифметических операций следовало бы выполнять ряд дополнительных действий. Например, при сложении нужно было бы проверять знаки обоих операндов и определять знак результата. Если знаки одинаковые, то вычисляется сумма операндов и ей присваивается тот же знак. Если знаки разные, то из большего по абсолютной величине числа вычитается меньшее и результату присваивается знак большего числа. То есть при таком представлении чисел (в виде только прямого кода) операция сложения реализуется через достаточно сложный алгоритм. Если же отрицательные числа представлять в виде дополнительного кода, то операция сложения, в том числе и разного знака, сводится к из поразрядному сложению.

Для компьютерного представления целых чисел обычно используется один, два или четыре байта, то есть ячейка памяти будет состоять из восьми, шестнадцати или тридцати двух разрядов соответственно.

Например,

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 13 - student2.ru

А) (+95)-(+127)=-32 01011111+10000000 + 1 = 11011111=-32

+95 обратный код инкремент

(+95)+(+127)=222; 256-222=34 дополнительный код отрицательного числа (-34) 01011111+01111111=-34

+95 +127

Б) Аналогично для 2ух байтовых

2. Порядок назначения IP-адресов. Назначение адресов автономной сети. Централизованное распределение адресов. Адресация и технология CIDR.

Наши рекомендации