Мгновенным центром скоростей (МЦС) является точка на плоскости, абсолютная скорость которой в данный момент равна нулю
План урока № 21
Тема урока: Понятие о плоскопараллельном движении тела. Теорема о сложении скоростей. Мгновенный центр скоростей.
Цель урока:Изучить Понятие о плоскопараллельном движении тела. Теорема о сложении скоростей. Мгновенный центр скоростей.
Оборудование:Компьютер, плакаты
Место проведения:Аудитория №55
Порядок проведения
1.Организационный момент
2.Изложение нового материала
3.Закрепление материала
4.Подведение итогов
Ход урока
Плоскопараллелъным, или плоским, называется такое движение твердого тела, при котором все точки тела перемещаются параллельно некоторой неподвижной в рассматриваемой системе отсчета плоскости.
Плоскопараллельное движение можно изучать, рассматривая любое плоское сечение тела, параллельное неподвижной плоскости, называемой основной (рис. 12.1).
Все точки тела, расположенные на прямой, перпендикулярной к основной плоскости, движутся одинаково.
Плоскопараллельное движение изучается двумя методами: методом разложения сложного движения на поступательное и вращательное и методом мгновенных центров скоростей.
Метод разложения сложного движения на поступательное и вращательное
Плоскопараллельное движение раскладывают на два движения: поступательное вместе с некоторым полюсом и вращательное относительно этого полюса.
Разложение используют для определения скорости любой точки тела, применяя теорему о сложении скоростей (рис. 12.2).
Точка А движется вместе с точкой В, а затем поворачивается вокруг В с угловой скоростью и, тогда абсолютная скорость точки А будет равна
vA = vB + vAB, vAB = ωr (r = АВ).
Примером плоскопараллельного движения может быть движение колеса на прямолинейном участке дороги (рис. 12.3).
Скорость точки М
vM = ve + vr,
ve — скорость центра колеса переносная;
vr — скорость вокруг центра относительная.
уОх — неподвижная система координат,
y101x1 — подвижная система координат, связанная с осью колеса.
Метод определения мгновенного центра скоростей
Скорость любой точки тела можно определять с помощью мгновенного центра скоростей. При этом сложное движение представляют в виде цепи вращений вокруг разных центров.
Задача сводится к определению положения мгновенного центра вращений (скоростей) (рис. 12.4).
Мгновенным центром скоростей (МЦС) является точка на плоскости, абсолютная скорость которой в данный момент равна нулю.
Вокруг этой точки тело совершает поворот со скоростью ω.
Скорость точки А в данный момент равна
vA = ωOA,
т.к. vA — линейная скорость точки А, вращающейся вокруг МЦС.
Существуют три способа определения положения мгновенного центра скоростей.
Первый способ. Известна скорость одной точки тела vA и угловая скорость вращения тела ω (рис. 12.5).
Точку О находим на перпендикуляре к вектору скорости vA:
AO = vA/ω
Соединяем точку О с точкой B, замеряем расстояние ОВ.
vB ┴ ОВ, vB = ωОВ.
Второй способ. Известны скорости двух точек тела va и vb, и они не параллельны (рис. 12.6).
Проводим из точек А и В два перпендикуляра к известным векторам скоростей.
На пересечении перпендикуляров находим МЦС. Далее можно найти скорость любой точки С
vC /vB = OC/OB
Третий способ. Известны скорости двух точек тела, и они параллельны (va\\vb) (рис. 12.7).
Соединяем концы векторов, МЦС находится на пересечении линии, соединяющей концы векторов с линией АВ (рис. 12.7). При поступательном движении тела (рис. 12.7в) МЦС отсутствует.
Пример 1. Рассмотрим механизм, в котором стержень OA вращается вокруг точки О со скоростью ω. Вдоль стержня перемещается ползун М со скоростью vM (рис. 12.8). Определить абсолютную скорость точки М.
Решение
1. Относительное движение — вдоль стержня; скорость
vr = vM
2. Переносное движение — вращение стержня; скорость
ve = ωОМ.
3. Скорость абсолютного движения