Понятие Маска подсети. Определение. Пример применения
Маска подсети - это 32-битное значение, которое содержит биты, установленные в единицу для идентификатора сети и идентификатора подсети, и биты, установленные в 0 для идентификатора хоста. На рисунке показано формирование маски подсети для двух различных разделений адреса класса В.
После того как хост получил свой IP адрес и маску подсети, он может определить, предназначена ли IP датаграмма для (1) хоста в его собственной подсети, (2) хосту в другой подсети его собственной сети, или (3) хосту в другой сети. Зная собственный IP адрес, можно определить, к какому классу он относится: А, В или С (по старшим битам), также можно определить, где проведена граница между идентификатором сети и идентификатором подсети. По маске подсети можно определить где проведена граница между идентификатором подсети и идентификатором хоста.
Пример
Представьте себе адрес хоста 140.252.1.1 (адрес класса В), и маску подсети - 255.255.255.0 (8 бит на идентификатор подсети и 8 бит на идентификатор хоста).
Если IP адрес назначения 140.252.4.5, мы знаем, что идентификатор сети класса В тот же самый (140.252), однако идентификатор подсети другой (1 и 4). На рисунке 2.3 показано, как происходит сравнение двух IP адресов с использованием маски подсети.
Рис. 2.3 Сравнение двух подсетей класса В, использующих маски подсети.
Если IP адрес назначения 140.252.1.22, то идентификатор сети класса В тот же самый (140.252), и идентификатор подсети также тот же самый (1). Однако идентификатор хоста другой.
Если IP адрес назначения 192.43.235.6 (адрес класса С), идентификатор сети другой. С этим адресом не может быть произведено дальнейшее сравнение.
В процессе IP маршрутизации, сравнения, подобные этому, делаются все время с использованием двух IP адресов и маски подсети.
Маску подсети часто записывают вместе с IP-адресом нотации CIDR (в формате «IP-адрес/количество единичных бит в маске»).
Линии связи (31-36)
Типы и структура (31)
Линия связи (рис. 2.1) состоит в общем случае из физической среды, по которой передаются электрические информационные сигналы, аппаратуры передачи данных и промежуточной аппаратуры. Синонимом термина линия связи (line) является термин канал связи(channel).
Физическая среда передачи данных (medium) может представлять собой кабель, то есть набор проводов, изоляционных и защитных оболочек и соединительных разъемов, а также земную атмосферу или космическое пространство, через которые распространяются электромагнитные волны.
В зависимости от среды передачи данных линии связи разделяются на следующие (рис. 2.2.):
- проводные (воздушные);
- кабельные (медные и волоконно-оптические);
- радиоканалы наземной и спутниковой связи.
Проводные (воздушные) линии связи представляют собой провода без каких-либо изолирующих или экранирующих оплеток, проложенные между столбами и висящие в воздухе. По таким линиям связи традиционно передаются телефонные или телеграфные сигналы, но при отсутствии других возможностей эти линии используются и для передачи компьютерных данных. Скоростные качества и помехозащищенность этих линий оставляют желать много лучшего. Сегодня проводные линии связи быстро вытесняются кабельными.
Радиоканалы наземной и спутниковой связи образуются с помощью передатчика и приемника радиоволн.
Радиоканал отличается используемым диапазонам частот и дальностью канала
Существует большое количество различных типов радиоканалов, отличающихся как используемым частотным диапазоном, так и дальностью канала. Диапазоны коротких, средних и длинных волн (KB, СВ и ДВ), называемые также диапазонами амплитудной модуляции (Amplitude Modulation, AM) по типу используемого в них метода модуляции сигнала, обеспечивают дальнюю связь, но при невысокой скорости передачи данных. Более скоростными являются каналы, работающие на диапазонах ультракоротких волн (УКВ), для которых характерна частотная модуляция (Frequency Modulation, FM), а также диапазонах сверхвысоких частот (СВЧ или microwaves). В диапазоне СВЧ (свыше 4 ГГц) сигналы уже не отражаются ионосферой Земли и для устойчивой связи требуется наличие прямой видимости между передатчиком и приемником. Поэтому такие частоты используют либо спутниковые каналы, либо радиорелейные каналы, где это условие выполняется.
Кабельные линии представляют собой достаточно сложную конструкцию. Кабель состоит из проводников, заключенных в несколько слоев изоляции: электрической, электромагнитной, механической, а также, возможно, климатической. Кроме того, кабель может быть оснащен разъемами, позволяющими быстро выполнять присоединение к нему различного оборудования. В компьютерных сетях применяются три основных типа кабеля: кабели на основе скрученных пар медных проводов, коаксиальные кабели с медной жилой, а также волоконно-оптические кабели.
Скрученная пара проводов называется витой парой (twisted pair). Витая пара существует в экранированном варианте (Shielded Twistedpair, STP), когда пара медных проводов обертывается в изоляционный экран, и неэкранированном (Unshielded Twistedpair, UTP), когда изоляционная обертка отсутствует.
!!!Требуется рисунок!!!
Скручивание проводов снижает влияние внешних помех на полезные сигналы, передаваемые по кабелю. Коаксиальный кабель (coaxial) имеет несимметричную конструкцию и состоит из внутренней медной жилы и оплетки, отделенной от жилы слоем изоляции. Существует несколько типов коаксиального кабеля, отличающихся характеристиками и областями применения - для локальных сетей, для глобальных сетей, для кабельного телевидения и т. п. Волоконно-оптический кабель (optical fiber) состоит из тонких (5-60 микрон) волокон, по которым распространяются световые сигналы. Это наиболее качественный тип кабеля - он обеспечивает передачу данных с очень высокой скоростью (до 10 Гбит/с и выше) и к тому же лучше других типов передающей среды обеспечивает защиту данных от внешних помех.
В компьютерных сетях сегодня применяются практически все описанные типы физических сред передачи данных, но наиболее перспективными являются волоконно-оптические. На них сегодня строятся как магистрали крупных территориальных сетей, так и высокоскоростные линии связи локальных сетей. Популярной средой является также витая пара, которая характеризуется отличным соотношением качества к стоимости, а также простотой монтажа. С помощью витой пары обычно подключают конечных абонентов сетей на расстояниях до 100 метров от концентратора. Спутниковые каналы и радиосвязь используются чаще всего в тех случаях, когда кабельные связи применить нельзя - например, при прохождении канала через малонаселенную местность или же для связи с мобильным пользователем сети, таким как шофер грузовика, врач, совершающий обход, и т. п.
Аппаратура линий связи (32)
Аппаратура передачи данных (АПД или DCE - Data Circuit terminating Equipment) непосредственно связывает компьютеры или локальные сети пользователя с линией связи и является, таким образом, пограничным оборудованием. Традиционно аппаратуру передачи данных включают в состав линии связи. Примерами DCE являются модемы, терминальные адаптеры сетей ISDN, оптические модемы, устройства подключения к цифровым каналам. Обычно DCE работает на физическом уровне, отвечая за передачу и прием сигнала нужной формы и мощности в физическую среду.
Аппаратура пользователя линии связи, вырабатывающая данные для передачи по линии связи и подключаемая непосредственно к аппаратуре передачи данных, обобщенно носит название оконечное оборудование данных (ООД или DTE - Data Terminal Equipment). Примером DTE могут служить компьютеры или маршрутизаторы локальных сетей. Эту аппаратуру не включают в состав линии связи.
Разделение оборудования на классы DCE и DTE в локальных сетях является достаточно условным. Например, адаптер локальной сети можно считать как принадлежностью компьютера, то есть DTE, так и составной частью канала связи, то есть DCE.
Промежуточная аппаратура обычно используется на линиях связи большой протяженности. Промежуточная аппаратура решает две основные задачи:
улучшение качества сигнала;
создание постоянного составного канала связи между двумя абонентами сети.
В локальных сетях промежуточная аппаратура может совсем не использоваться, если протяженность физической среды - кабелей или радиоэфира - позволяет одному сетевому адаптеру принимать сигналы непосредственно от другого сетевого адаптера, без промежуточного усиления. В противном случае применяются устройства типа повторителей и концентраторов.
В глобальных сетях необходимо обеспечить качественную передачу сигналов на расстояния в сотни и тысячи километров. Поэтому без усилителей сигналов, установленных через определенные расстояния, построить территориальную линию связи невозможно. В глобальной сети необходима также и промежуточная аппаратура другого рода - мультиплексоры, демультиплексоры и коммутаторы. Эта аппаратура решает вторую указанную задачу, то есть создает между двумя абонентами сети составной канал из некоммутируемых отрезков физической среды - кабелей с усилителями. Важно отметить, что приведенные на рис. 2.1 мультиплексоры, демультиплексоры и коммутаторы образуют составной канал на долговременной основе, например на месяц или год, причем абонент не может влиять на процесс коммутации этого канала - эти устройства управляются по отдельным входам, абоненту недоступным (на рисунке не показаны).
Наличие промежуточной коммутационной аппаратуры избавляет создателей глобальной сети от необходимости прокладывать отдельную кабельную линию для каждой пары соединяемых узлов сети. Вместо этого между мультиплексорами и коммутаторами используется высокоскоростная физическая среда, например волоконно-оптический или коаксиальный кабель, по которому передаются одновременно данные от большого числа сравнительно низкоскоростных абонентских линий. А когда нужно образовать постоянное соединение между какими-либо двумя конечными узлами сети, находящимися, например, в разных городах, то мультиплексоры, коммутаторы и демультиплексоры настраиваются оператором канала соответствующим образом. Высокоскоростной канал обычно называют уплотненным каналом.
Промежуточная аппаратура канала связи прозрачна для пользователя, он ее не замечает и не учитывает в своей работе. Для него важны только качество полученного канала, влияющее на скорость передачи дискретных данных. В действительности же промежуточная аппаратура образует сложную сеть, которую называют первичной сетью, так как сама по себе она никаких высокоуровневых служб (например, файловой или передачи голоса) не поддерживает, а только служит основой для построения компьютерных, телефонных или иных сетей.
В зависимости от типа промежуточной аппаратуры все линии связи делятся на аналоговые и цифровые. В аналоговых линиях промежуточная аппаратура предназначена для усиления аналоговых сигналов, то есть сигналов, которые имеют непрерывный диапазон значений. Такие линии связи традиционно применялись в телефонных сетях для связи АТС между собой. Для создания высокоскоростных каналов, которые мультиплексируют несколько низкоскоростных аналоговых абонентских каналов, при аналоговом подходе обычно используется техника частотного мультиплексирования (Frequency Division Multiplexing, FDM).
В цифровых линиях связи передаваемые сигналы имеют конечное число состояний. Как правило, элементарный сигнал, то есть сигнал, передаваемый за один такт работы передающей аппаратуры, имеет 2 или 3 состояния, которые передаются в линиях связи импульсами прямоугольной формы. С помощью таких сигналов передаются как компьютерные данные, так и оцифрованные речь и изображение. В цифровых каналах связи используется промежуточная аппаратура, которая улучшает форму импульсов и обеспечивает их ресинхронизацию, то есть восстанавливает период их следования. Промежуточная аппаратура образования высокоскоростных цифровых каналов (мультиплексоры, демультиплексоры, коммутаторы) работает по принципу временного мультиплексирования каналов (Time Division Multiplexing, TDM), когда каждому низкоскоростному каналу выделяется определенная доля времени (тайм-слот или квант) высокоскоростного канала.
Аппаратура передачи дискретных компьютерных данных по аналоговым и цифровым линиям связи существенно отличается, так как в первом случае линия связи предназначена для передачи сигналов произвольной формы и не предъявляет никаких требований к способу представления единиц и нулей аппаратурой передачи данных, а во втором - все параметры передаваемых линией импульсов стандартизованы. Другими словами, на цифровых линиях связи протокол физического уровня определен, а на аналоговых линиях - нет.
Характеристики линий связи (33-36)