Классификация проекций по виду меридианов и параллелей нормальной сетки.

Классификация проекций по виду нормальной картографической сетки

Вспомогательными поверхностями при переходе от эллипсои­да или шара к карте могут быть плоскость, цилиндр, конус, серия конусов и некоторые другие геометрические фигуры. Цилиндрические проекции — проектирование шара (эллипсои­да) ведется на поверхность касательного или секущего цилиндра, а затем его боковая поверхность разворачивается в плоскость. Если ось цилиндра совпадает с осью вращения Земли, а его поверхность касается шара по экватору (или сечет его по па­раллелям), то проекция называется нормальной (прямой) цилинд­рической. Тогда меридианы нормальной сетки предстают в виде равноотстоящих параллельных прямых, а параллели — в виде пря­мых, перпендикулярных к ним. В таких проекциях меньше всего искажений в тропических и приэкваториальных областях.

Если ось цилиндра расположена в плоскости экватора, то это — поперечная цилиндрическая проекция. Цилиндр касается шара по меридиану, искажения вдоль него отсутствуют, и следовательно, в такой проекции наиболее выгодно изображать территории, вы­тянутые с севера на юг. В тех случаях, когда ось вспомогательного цилиндра расположена под углом к плоскости экватора, проекция называется косой цилиндрической. Она удобна для вытянутых тер­риторий, ориентированных на северо-запад или северо-восток. Конические проекции — поверхность шара (эллипсоида) проек­тируется на поверхность касательного или секущего конуса, после чего она как бы разрезается по образующей и разворачивается в плоскость. Как и в предыдущем случае, различают нор­мальную (прямую) коническую проекцию, когда ось конуса совпа­дает с осью вращения Земли, поперечную коническую — ось конуса лежит в плоскости экватора и косую коническую — ось конуса на­клонена к плоскости экватора.

В нормальной конической проекции меридианы представляют собой прямые, расходящиеся из точки полюса, а параллели — дуги концентрических окружностей. Воображаемый конус каса­ется земного шара или сечет его в районе средних широт, поэто­му в такой проекции удобнее всего картографировать территории России, Канады, США, вытянутые с запада на восток в средних широтах.

Азимутальные проекции — поверхность земного шара (эллип­соида) переносится на касательную или секущую плоскость. Если плоскость перпендикулярна к оси вращения Земли, то получается нормальная (полярная) азимутальная проекция. Парал­лели в ней являются концентрическими окружностями, а мериди­аны — радиусами этих окружностей. В этой проекции всегда кар­тографируют полярные области нашей и других планет. Если плоскость проекции перпендикулярна к плоскости эква­тора, то получается поперечная (экваториальная) азимутальная проекция. Она всегда используется для карт полушарий. А если проектирование выполнено на касательную или секущую вспомогательную плоскость, находящуюся под любым углом к плоскости экватора, то получается косая азимутальная проекция.

Можно показать, что азимутальные проекции являются пре­дельным случаем конических, когда угол при вершине конуса принимается равным 180°.

Среди азимутальных проекций выделяют несколько их разно­видностей, различающихся по положению точки, из которой ве­дется проектирование шара на плоскость. Условные проекции — проекции, для которых нельзя подобрать простых геометрических аналогов. Их строят, исходя из каких-либо заданных условий, например желательного вида географической сетки, того или иного распределения искажений на карте, задан­ного вида сетки и др. В частности, к условным принадлежат псевдо­цилиндрические, псевдоконические, псевдоазимутальные и другие про­екции, полученные путем преобразования одной или нескольких исходных проекций.

Псевдоцилиндрические проекции — проекции, в которых парал­лели — прямые линии (как и в нормальных цилиндрических про­екциях), средний меридиан — перпендикулярная им прямая, а остальные меридианы — кривые, увеличивающие свою кривизну по мере удаления от среднего меридиана. Чаще всего эти проекции применяют для карт мира и Тихого океана.

Псевдоконические проекции — такие, в которых все параллели изображаются дугами концентрических окружностей (как в нор­мальных конических), средний меридиан — прямая линия, а ос­тальные меридианы — кривые, причем кривизна их возрастает с удалением от среднего меридиана. Применяются для карт России, Евразии, других материков.

Поликонические проекции — проекции, получаемые в результа­те проектирования шара (эллипсоида) на множество конусов. В нормальных поликонических проекциях параллели представлены дугами эксцентрических окружностей, а меридианы — кривые, симметричные относительно прямого среднего меридиана (рис. 3.11). Чаще всего эти проекции применяются для карт мира.

Псевдоазимутальные проекции — видоизмененные азимуталь­ные проекции. В полярных псевдоазимутальных проекциях парал­лели представляют собой концентрические окружности, а мери­дианы — кривые линии, симметричные относительно одного или двух прямых меридианов. Поперечные и косые псевдоазимуталь­ные проекции имеют общую овальную форму и обычно применя­ются для карт Атлантического океана или Атлантического океана вместе с Северным Ледовитым.

Многогранные проекции — проекции, получаемые путем про­ектирования шара (эллипсоида) на поверхность касательного или секущего многогранника. Чаще всего каждая грань пред­ставляет собой равнобочную трапецию, хотя возможны и иные варианты (например, шестиугольник, квадрат, ромб). Разновид­ностью многогранных являются многополосные проекции, причем полосы могут «нарезаться» и по меридианам, и по параллелям. Такие проекции выгодны тем, что искажения в пределах каждой грани или полосы совсем невелики, поэтому их всегда использу­ют для многолистных карт. Рамка каждого листа, составленного в многогранной проекции, представляет собой трапецию, образо­ванную линиями меридианов и параллелей. За это приходится «рас­плачиваться» — блок листов карт нельзя совместить по общим рамкам без разрывов.

Наши рекомендации