Пневматики вагона и их назначение

Введение

Пневматикой называется раздел техники, объединяющий устройства, работающие на сжатых газах.

Рабочим телом, которое используется в пневматическом оборудовании вагонов метрополитена, является сжатый воздух. Он является смесью газов: азота (около 78%), кислорода (около 21%), инертных газов, углекислого газа, метана. Также в воздухе присутствует водяной пар.

В основе работы всех пневматических систем лежат фундаментальные законы термодинамики и гидродинамики, описывающие поведение реального газа. Однако многие свойства реальных газов с большой точностью описываются моделью идеального газа, в которой предполагается, что все частицы (молекулы) бесконечно малы (то есть размер молекул много меньше расстояний между ними) и взаимодействием частиц друг с другом можно пренебречь (то есть силы притяжения между молекулами не учитываются, а силы отталкивания возникают только при соударениях). Модель очень хорошо описывает большинство задач термодинамики газов, кроме экстремальных температур или давлений. Воздух при давлениях, близких к атмосферному, и температурах, близких к комнатной, с большой точностью является идеальным газом.

Свойства воздуха

Знание основных свойств воздуха необходимо для понимания работы устройств и приборов, относящихся к пневматическому оборудованию вагонов Московского метрополитена.

Основным свойством воздуха, которое используется в работе пневматического оборудования, является его способность к сжатию при увеличении давления и последующему расширению с совершением полезной работы. Жидкости, в отличие от газов, практически несжимаемы, и принципы работы устройств гидравлики несколько иные. Именно энергия аккумулированного сжатого воздуха и выполняет ту или иную работу в пневматических устройствах, что обеспечивает функционирование различных узлов как на отдельно взятом вагоне, так и на составе в целом.

Принцип работы всех пневматических устройств основан на создании разности давлений воздуха в рабочих камерах или полостях определенного узла или устройства, которая вызывает механическое воздействие на другой узел или на все пневматическое устройство в целом.

Давление и единицы его измерения

Давление представляет собой физическую величину, измеряемую отношением силы, действующей перпендикулярно поверхности взаимодействия между телами, к площади этой поверхности (если по данной поверхности сила распределена равномерно), или в виде формулы: P=F/S.

Единицей измерения давления в системе СИ является Паскаль (Па). 1 Паскаль равен давлению, которое оказывает сила в 1 Ньютон (Н) на площадь в 1 м2, или 1 кг.м/(с2.м2) = 1 кг/(м.с2)

Для работы пневматических устройств важным свойством газа как рабочего тела является то, что газ передает производимое на него поверхностными силами внешнее давление по всем направлениям без изменения (закон Паскаля).

Единица давления Паскаль применяется, главным образом, в научной среде. В технике и быту принятыми единицами измерения являются физическая атмосфера (АТМ), техническая атмосфера (АТ) и миллиметры ртутного столба (мм рт. ст.)

Физическая атмосфера (АТМ) — единица измерения давления, равная нормальному атмосферному давлению на высоте уровня моря, т.е. давлению, уравновешиваемому столбом ртути высотой 760 мм при температуре 0°С, плотности ртути 13595,1 кг/м3 и нормальном ускорении свободного падения 9,80665 м/сек2. Иногда физическую атмосферу называют также нормальной атмосферой. Причиной атмосферного давления является гидростатическое давление воздуха на поверхность Земли и все находящиеся на ней предметы, создаваемое притяжением атмосферы к Земле. Численно атмосферное давление равно отношению веса столба воздуха над предметом к вертикальной проекции площади этого предмета. 1 АТМ=1,033 кгс/см2. Следует помнить, что 1 килограмм-сила (кгс) равен приблизительно 9,81 Н, таким образом нормальное атмосферное давление 101325 Па равно 1,0332 кгс/см2.

Техническая атмосфера (АТ) — физическая величина, относящаяся к системе единиц измерений МКГСС и равна давлению, производимому силой в 1 кгс, равномерно распределенной по плоской поверхности площадью в 1см2.

Примечания:

Для справки приведем соотношения между различными единицами давления:

1 атм = 1,033 кгс/см2 = 760 мм рт. ст. = 101325 Па

1 ат = 1 кгс/см2 = 735,66 мм рт.ст. = 98066 Па

В инженерной пневматике наиболее распространенной единицей измерения давления является именно техническая атмосфера.

Закон Бойля-Мариотта

Параметры вещества в любом состоянии связаны друг с другом уравнением состояния, вид которого в большинстве случаев неизвестен. Лишь для газов, частицы которых достаточно далеки друг от друга и почти не взаимодействуют, такое уравнение известно сравнительно точно.

Рассмотрим газ, находящийся в некотором замкнутом объеме (рис. 1.1), т.е. параметры которого (температура, давление, плотность) одинаковы по всему объему и неизменны. Такая система называется равновесной. Если медленно уменьшать объем системы, поддерживая при этом постоянной ее температуру, можно увидеть, что давление газа в системе растет, причем если обозначить первоначальные значения давления и объема как P0 и V0, а конечные — как P1 и V1, то можно сделать вывод, что произведение давления и объема газа есть постоянная величина для любой точки процесса. То есть P0V0 = P1V1 = const при T=const.

Пневматики вагона и их назначение - student2.ru

Рис. 1.1. Изотермическое сжатие

Это соотношение носит название закона Бойля-Мариотта и формулируется так: произведение объема данной массы газа на его давление есть величина постоянная при неизменной температуре.

Примечания:

Процесс, протекающий при постоянной температуре, называется изотермическим. Реальный процесс сжатия газа, например, в компрессоре, не является изотермическим — уменьшение объема и увеличение давления сопровождается ростом температуры. Однако, если сжатый газ охладить до температуры, которую он имел до сжатия, можно будет увидеть, что для начальных и конечных значений объема и давления закона Бойля-Мариотта соблюдается.

Если изобразить изотермический процесс сжатия газа в виде графика, на одной оси которого будет отсчитываться объем, а на другой — давление (так называемая pV-диаграмма - рис. 1.2), то проявление закона Бойля-Мариотта состоит в том, что точки этого графика представляют собой множество вершин прямоугольников равной площади:

Пневматики вагона и их назначение - student2.ru

Рис. 1.2. PV-диаграмма

Пневматики вагона и их назначение

Пневматикой называется совокупность пневматических устройств и приборов, объединенных в одну группу по назначению, типу выполняемой ими работы, а также по функциональной зависимости друг от друга. На каждом вагоне метро существует шесть самостоятельных пневматик: напорная, тормозная, автостопная, дверная, управления и вспомогательная.

Пневматики вагона и их назначение - student2.ru

Рис. 1.3. Функциональная схема пневматик

  • Напорная пневматика предназначена для создания сжатого воздуха, его охлаждения, очистки от механических примесей, масла и влаги, его накопления и хранения с целью обеспечения работы всех пневматических устройств вагона. К напорной пневматике относятся: мотор-компрессор с воздушным фильтром и маслоотделителями, змеевик, воздушные резервуары, обратный и предохранительный клапаны, регулятор давления и т.д.
  • Тормозная пневматика выполняет все виды пневматического торможения и отпуска тормозов. В тормозную пневматику входят: кран машиниста (как командный орган), тормозной воздухораспределитель, тормозные цилиндры, АВУ-045 и т.д.
  • Автостопная пневматика производит экстренное пневматическое торможение состава с одновременным отключением электрической тяги двигателей в случае проезда светофора с запрещающим показанием оборудованным путевой скобой автостопа, путевой инерционной скобы с повышенной скоростью или постоянной путевой скобы. В эту пневматику входят два устройства — УАВА (универсальный автоматический выключатель автостопа) и срывной клапан.
  • Дверная пневматика обеспечивает работу раздвижных дверей вагона. Она состоит из следующих устройств: ДВР (дверной воздухораспределитель), пневмодроссели (регуляторы скорости движения дверных створок), дверные цилиндры, редуктор дверной магистрали и т.д.
  • Пневматика управления служит для обеспечения сжатым воздухом силовых электрических аппаратов. К этой пневматике относятся пневматические приводы и электромагнитные вентили включающего типа, управляющие работой этих приводов (электропневматический реверсор, линейные контакторы и переключатель положений), редуктор магистрали управления.
  • Вспомогательная пневматика предназначена для работы звукового сигнала, стеклоочистителей, контроля за значениями давления воздуха в магистралях (манометры), а также — на вагонах некоторых типов — для отжатия башмаков токоприемников и смазки гребней колес с целью уменьшения их выработки.

Примечания:

Каждая из перечисленных выше пневматик работает совместно с одной или несколькими воздушными магистралями вагона.

Наши рекомендации