Строение и функции углеводов и липидов
Вода
Вода — самое распространенное неорганическое соединение. Содержание воды составляет от 10% (зубная эмаль) до 90% массы клетки (развивающийся эмбрион). Без воды жизнь невозможна, биологическое значение воды определяется ее химическими и физическими свойствами.
Молекула воды имеет угловую форму: атомы водорода по отношению к кислороду образуют угол, равный 104,5°. Та часть молекулы, где находится водород, заряжена положительно, часть, где находится кислород, — отрицательно, в связи с этим молекула воды является диполем. Между диполями воды образуются водородные связи. Физические свойства воды: прозрачна, максимальная плотность — при 4 °С, высокая теплоемкость, практически не сжимается; чистая вода плохо проводит тепло и электричество, замерзает при 0 °С, кипит при 100 °С и т.д. Химические свойства воды: хороший растворитель, образует гидраты, вступает в реакции гидролитического разложения, взаимодействует со многими оксидами и т.д. По отношению к способности растворяться в воде различают: гидрофильные вещества — хорошо растворимые, гидрофобные вещества — практически нерастворимые в воде.
Биологическое значение воды:
· является основой внутренней и внутриклеточной среды,
· обеспечивает поддержание пространственной структуры,
· обеспечивает транспорт веществ,
· гидратирует полярные молекулы,
· служит растворителем и средой для диффузии,
· участвует в реакциях фотосинтеза и гидролиза,
· способствует охлаждению организма,
· является средой обитания для многих организмов,
· способствует миграциям и распространению семян, плодов, личиночных стадий,
· является средой, в которой происходит оплодотворение,
· у растений обеспечивает транспирацию и прорастание семян,
· способствует равномерному распределению тепла в организме и мн. др.
Углеводы — органические соединения, состав которых в большинстве случаев выражается общей формулой Cn(H2O)m (n и m ≥ 4). Углеводы подразделяются на моносахариды, олигосахариды и полисахариды.
Моносахариды — простые углеводы, в зависимости от числа атомов углерода подразделяются на триозы (3), тетрозы (4), пентозы (5), гексозы (6) и гептозы (7 атомов). Наиболее распространены пентозы и гексозы. Свойства моносахаридов — легко растворяются в воде, кристаллизуются, имеют сладкий вкус, могут быть представлены в форме α- или β-изомеров.
Рибоза и дезоксирибоза относятся к группе пентоз, входят в состав нуклеотидов РНК и ДНК, рибонуклеозидтрифосфатов и дезоксирибонуклеозидтрифосфатов и др. Дезоксирибоза (С5Н10О4) отличается от рибозы (С5Н10О5) тем, что при втором атоме углерода имеет атом водорода, а не гидроксильную группу, как у рибозы.
Глюкоза, или виноградный сахар (С6Н12О6), относится к группе гексоз, может существовать в виде α-глюкозы или β-глюкозы. Отличие между этими пространственными изомерами заключается в том, что при первом атоме углерода у α-глюкозы гидроксильная группа расположена под плоскостью кольца, а у β-глюкозы — над плоскостью.
Глюкоза — это:
один из самых распространенных моносахаридов,
важнейший источник энергии для всех видов работ, происходящих в клетке (эта энергия выделяется при окислении глюкозы в процессе дыхания),
мономер многих олигосахаридов и полисахаридов,
необходимый компонент крови.
Фруктоза, или фруктовый сахар, относится к группе гексоз, слаще глюкозы, в свободном виде содержится в меде (более 50%) и фруктах. Является мономером многих олигосахаридов и полисахаридов.
Олигосахариды — углеводы, образующиеся в результате реакции конденсации между несколькими (от двух до десяти) молекулами моносахаридов. В зависимости от числа остатков моносахаридов различают дисахариды, трисахариды и т. д. Наиболее распространены дисахариды. Свойства олигосахаридов — растворяются в воде, кристаллизуются, сладкий вкус уменьшается по мере увеличения числа остатков моносахаридов. Связь, образующаяся между двумя моносахаридами, называется гликозидной.
Сахароза, или тростниковый, или свекловичный сахар, — дисахарид, состоящий из остатков глюкозы и фруктозы. Содержится в тканях растений. Является продуктом питания (бытовое название — сахар). В промышленности сахарозу вырабатывают из сахарного тростника (стебли содержат 10–18%) или сахарной свеклы (корнеплоды содержат до 20% сахарозы).
Мальтоза, или солодовый сахар, — дисахарид, состоящий из двух остатков глюкозы. Присутствует в прорастающих семенах злаков.
Лактоза, или молочный сахар, — дисахарид, состоящий из остатков глюкозы и галактозы. Присутствует в молоке всех млекопитающих (2–8,5%).
Полисахариды — это углеводы, образующиеся в результате реакции поликонденсации множества (несколько десятков и более) молекул моносахаридов. Свойства полисахаридов — не растворяются или плохо растворяются в воде, не образуют ясно оформленных кристаллов, не имеют сладкого вкуса.
Крахмал (С6Н10О5)n — полимер, мономером которого является α-глюкоза. Полимерные цепочки крахмала содержат разветвленные (амилопектин, 1,6-гликозидные связи) и неразветвленные (амилоза, 1,4-гликозидные связи) участки. Крахмал — основной резервный углевод растений, является одним из продуктов фотосинтеза, накапливается в семенах, клубнях, корневищах, луковицах. Содержание крахмала в зерновках риса — до 86%, пшеницы — до 75%, кукурузы — до 72%, в клубнях картофеля — до 25%. Крахмал — основной углевод пищи человека (пищеварительный фермент — амилаза).
Гликоген (С6Н10О5)n — полимер, мономером которого также является α-глюкоза. Полимерные цепочки гликогена напоминают амилопектиновые участки крахмала, но в отличие от них ветвятся еще сильнее. Гликоген — основной резервный углевод животных, в частности, человека. Накапливается в печени (содержание — до 20%) и мышцах (до 4%), является источником глюкозы.
Целлюлоза (С6Н10О5)n — полимер, мономером которого является β-глюкоза. Полимерные цепочки целлюлозы не ветвятся (β-1,4-гликозидные связи). Основной структурный полисахарид клеточных стенок растений. Содержание целлюлозы в древесине — до 50%, в волокнах семян хлопчатника — до 98%. Целлюлоза не расщепляется пищеварительными соками человека, т.к. у него отсутствует фермент целлюлаза, разрывающий связи между β-глюкозами.
Инулин — полимер, мономером которого является фруктоза. Резервный углевод растений семейства Сложноцветные.
Гликолипиды — комплексные вещества, образующиеся в результате соединения углеводов и липидов.
Гликопротеины — комплексные вещества, образующиеся в результате соединения углеводов и белков.
Функции углеводов
Функция | Примеры и пояснения |
Энергетическая | Основной источник энергии для всех видов работ, происходящих в клетках. При расщеплении 1 г углеводов выделяется 17,6 кДж. |
Структурная | Из целлюлозы состоит клеточная стенка растений, из муреина — клеточная стенка бактерий, из хитина — клеточная стенка грибов и покровы членистоногих. |
Запасающая | Резервным углеводом у животных и грибов является гликоген, у растений — крахмал, инулин. |
Защитная | Слизи предохраняют кишечник, бронхи от механических повреждений. Гепарин предотвращает свертывание крови у животных и человека. |
https://studopedia.ru/3_47443_stroenie-primeri-i-funktsii-uglevodov.html
Строение и функции липидов
Липиды не имеют единой химической характеристики. В большинстве пособий, давая определение липидам, говорят, что это сборная группа нерастворимых в воде органических соединений, которые можно извлечь из клетки органическими растворителями — эфиром, хлороформом и бензолом. Липиды можно условно разделить на простые и сложные.
Простые липиды в большинстве представлены сложными эфирами высших жирных кислот и трехатомного спирта глицерина — триглицеридами. Жирные кислоты имеют: 1) одинаковую для всех кислот группировку — карбоксильную группу (–СООН) и 2) радикал, которым они отличаются друг от друга. Радикал представляет собой цепочку из различного количества (от 14 до 22) группировок –СН2–. Иногда радикал жирной кислоты содержит одну или несколько двойных связей (–СН=СН–), такую жирную кислоту называют ненасыщенной. Если жирная кислота не имеет двойных связей, ее называют насыщенной. При образовании триглицерида каждая из трех гидроксильных групп глицерина вступает в реакцию конденсации с жирной кислотой с образованием трех сложноэфирных связей.
(function(w, d, n, s, t) { w[n] = w[n] || []; w[n].push(function() { if (screen.width '800') { Ya.Direct.insertInto(53383, "yandex_ad", { site_charset: "windows-1251", ad_format: "direct", font_size: 1, type: "horizontal", border_type: "block", limit: 4, title_font_size: 3, site_bg_color: "FFFFFF", header_bg_color: "1D865E", border_color: "1D865E", title_color: "3B6162", url_color: "17A470", all_color: "17A470", text_color: "000000", hover_color: "00CC66", favicon: true }); } }); t = d.documentElement.firstChild; s = d.createElement("script"); s.type = "text/javascript"; s.src = "http://an.yandex.ru/system/context.js"; s.setAttribute("async", "true"); t.insertBefore(s, t.firstChild); })(window, document, "yandex_context_callbacks"); Если в триглицеридах преобладают насыщенные жирные кислоты, то при 20°С они — твердые; их называют жирами, они характерны для животных клеток. Если в триглицеридах преобладают ненасыщенные жирные кислоты, то при 20 °С они — жидкие; их называют маслами, они характерны для растительных клеток.
1 — триглицерид; 2 — сложноэфирная связь; 3 — ненасыщенная жирная кислота;
4 — гидрофильная головка; 5 — гидрофобный хвост.
Плотность триглицеридов ниже, чем у воды, поэтому в воде они всплывают, находятся на ее поверхности.
К простым липидам также относят воски — сложные эфиры высших жирных кислот и высокомолекулярных спиртов (обычно с четным числом атомов углерода).
Сложные липиды. К ним относят фосфолипиды, гликолипиды, липопротеины и др.
Фосфолипиды — триглицериды, у которых один остаток жирной кислоты замещен на остаток фосфорной кислоты. Принимают участие в формировании клеточных мембран.
Липопротеины — комплексные вещества, образующиеся в результате соединения липидов и белков.
Липоиды — жироподобные вещества. К ним относятся каротиноиды (фотосинтетические пигменты), стероидные гормоны (половые гормоны, минералокортикоиды, глюкокортикоиды), гиббереллины (ростовые вещества растений), жирорастворимые витамины (А, D, Е, К), холестерин, камфора и т.д.
Функции липидов
Функция | Примеры и пояснения |
Энергетическая | Основная функция триглицеридов. При расщеплении 1 г липидов выделяется 38,9 кДж. |
Структурная | Фосфолипиды, гликолипиды и липопротеины принимают участие в образовании клеточных мембран. |
Запасающая | Жиры и масла являются резервным пищевым веществом у животных и растений. Важно для животных, впадающих в холодное время года в спячку или совершающих длительные переходы через местность, где нет источников питания. Масла семян растений необходимы для обеспечения энергией проростка. |
Защитная | Прослойки жира и жировые капсулы обеспечивают амортизацию внутренних органов. Слои воска используются в качестве водоотталкивающего покрытия у растений и животных. |
Теплоизоляционная | Подкожная жировая клетчатка препятствует оттоку тепла в окружающее пространство. Важно для водных млекопитающих или млекопитающих, обитающих в холодном климате. |
Регуляторная | Гиббереллины регулируют рост растений. Половой гормон тестостерон отвечает за развитие мужских вторичных половых признаков. Половой гормон эстроген отвечает за развитие женских вторичных половых признаков, регулирует менструальный цикл. Минералокортикоиды (альдостерон и др.) контролируют водно-солевой обмен. Глюкокортикоиды (кортизол и др.) принимают участие в регуляции углеводного и белкового обменов. |
Источник метаболической воды | При окислении 1 кг жира выделяется 1,1 кг воды. Важно для обитателей пустынь. |
Каталитическая | Жирорастворимые витамины A, D, E, K являются кофакторами ферментов, т.е. сами по себе эти витамины не обладают каталитической активностью, но без них ферменты не могут выполнять свои функции. |
https://studopedia.ru/3_47444_stroenie-i-funktsii-lipidov.html