Биосинтез белка. Решение типовых задач

Задача 1

Одна из цепочек молекулы ДНК имеет следующую последовательность нуклеотидов: ГЦТАЦГГЦТТГЦ. Какие т-РНК, т. е. с какими антикодонами, принимают участие в синтезе белка, закодированного комплементарной цепочкой ДНК?

Решение

Необходимо построить комплементарную цепочку ДНК, поскольку она является, по условию задачи.кодирующей. Комплементарная цепочка ДНК: ЦГА–ТГЦ–ЦГА–АЦГ. Далее построим цепочку и-РНК, комплементарную данной цепи ДНК:

ЦГА– ТГЦ– ЦГА–АЦГ (ДНК)

ГЦУ– АЦГ– ГЦУ–УГЦ (и-РНК).

Антикодоны т-РНК являются комплементарными кодонам и-РНК, следовательно они будут следующие: ЦГА–УГЦ–ЦГА–АЦГ.

Ответ: антикодоны т-РНК: ЦГА–УГЦ–ЦГА–АЦГ.

Задача 2

Молекула белка состоит из 200 аминокислотных остатков. Какую длину (в нм) имеет определяющий его ген, если виток спирали ДНК составляет 3,4 нм, а каждый виток содержит 10 пар нуклеотидов.

Решение

Поскольку белок состоит из 200 аминокислот, то участок ДНК включает 200 триплетов, или 200 х 3=600 нуклеотидов.

Определение длины одного нуклеотида:

Длина одного нуклеотида – Х нм

Длина 10 нуклеотидов – 3,4 нм

Х=0,34 нм

Длина участка ДНК составляет 600х0,34=204 нм.

Ответ: длина участка ДНК составляет 204 нм.

Задача 3.

В молекуле ДНК обнаружено 880 гуаниловых нуклеотидов, которые составляют 22 % от общего количества нуклеотидов этой ДНК. Определить: а) сколько содержится других нуклеотидов по отдельности в этой молекуле ДНК?; б) Какова длина ДНК?

Решение

Согласно принципу комплементарности (А+Т) + (Г+Ц)= 100%.

1) Определяем количество цитидилового нуклеотида: Г= Ц=880, или 22 %.

2) На долю двух других видов нуклеотидов (Т+А) приходится

100 % – 44 %= 56 %.

3) Определяем долю А + Т: Х=56 % х 880/22%= 2240; (А= Т=2240:2=1120).

4) Определяем общее количество нуклеотидов: 880+880+1120+1120=4000.

5) Для определения длины ДНК надо вычислить количество нуклеотидов в одной цепи ДНК: 4000: 2= 2000.

6) Вычисляем длину одной цепи ДНК: 2000 х 0.34 нм = 680 нм

Ответ: длина молекулы ДНК – 680 нм.

Задача 4. Одна из цепей молекулы ДНК имеет следующий порядок нуклеотидов: 5-ЦЦГЦТАТАЦГТЦ-3,. Определите последовательность аминокислот в соответствующем полипептиде, если известно, что и-РНК синтезируется на цепи ДНК, комплементарной данной цепи ДНК.

Решение

В условии задачи сказано, что и-РНК синтезируется на комплементарной данной цепи ДНК. Поэтому необходимо построить комплементарную цепь ДНК: 3,-ГГЦГАТАТГЦАГ-5,. Далее нужно определить последовательность нуклеотидов и-РНК: 5,- ЦЦГЦУАУАЦГУЦ-3,. Триплет, или кодон (три рядом расположенных нуклеотида и-РНК) кодирует определенную аминокислоту. Соответствующие триплетам аминокислоты находим по таблице генетического кода. Триплет ЦЦГ соответствует пролину (про), ЦУА – лейцину (лей); УАЦ – тирозину (тир), ГУЦ – валину (вал).

Ответ: последовательность аминокислот в полипептиде будет следующей: про–лей–тир–вал.

https://studopedia.org/12-36657.html

Морфология хромосом

Хромосомы – структуры ядра клетки, являющиеся носителями генов и определяющие наследственные свойства организма. Поэтому ядро является информационной системой клетки. Термин «Хромосома» предложен в

1888 г. немецким ученым В. Вальдейером.

В хромосомах сконцентрировано 99 % ДНК клетки. Основу хромосомы составляет ДНК (40 %), связанная с основными белками – гистонами (40 %) в нуклеопротеид. Хромосомы формируются в результате спирализации (укорочения, утолщения) нитей хроматина. Их химическая структура аналогична хроматину. Хроматин представляет собой комплекс ДНК и белков-гистонов.В составе хроматина имеются также негистоновые белки (белки кислые), РНК, липиды, ионы кальция и магния.Хромосомыформируются в результате спирализации хроматина. Благодаря спирализации хромосомной ДНК и упаковке ее белками, длинная молекула ДНК на стадии метафазы митоза максимально укорачивается, и хромосома различима в световой микроскоп как двойная структура. При этом нуклеопротеидные нити хроматина укорачиваются, уплотняются, превращаясь в компактные структуры – хромосомы. На вид хромосомы представляют собой удлиненные палочковидные структуры, имеющие два плеча, разделенные первичной перетяжкой (центромерой). Центромера – область хромосомы, к которой прикрепляются нити веретена деления. В соматических клетках (клетках тела) содержатся гомологичные хромосомы, всего 23 пары. Каждая пара хромосом состоит из одной «материнской» (из яйцеклетки) и одной «отцовской» (из сперматозоида). Обе они гомологичны, т. е. одинаковы по размеру, форме, набору генов. Половые клетки, образовавшиеся в результате мейоза, содержат только одну из двух хромосом. У человека около 100 000 генов, расположенных во всех хромосомах, по несколько тысяч в каждой.

Строение хромосомы (рис. 25):

1) плечи хромосомы;

2) первичная перетяжка – центромера, которая представляет собой утонченный неспирализованный участок хромосомы, делящий хромосому на 2 части (плечи хромосомы);

3) кинетохор, расположенный в области центромеры – сократительные (фибриллярные) нити, регулирующие движение хромосом во время деления клетки. К кинетохору присоединяются нити веретена деления, которые разводят хромосомы к полюсам клетки;

4) у некоторых хромосом встречается вторичная перетяжка (ядрышковый организатор хромосом) – участок хромосомы, который отвечает за синтез ядрышек и состоит из РНК и белка.

Биосинтез белка. Решение типовых задач - student2.ru Биосинтез белка. Решение типовых задач - student2.ru Биосинтез белка. Решение типовых задач - student2.ru

Рис. 25. Форма и структура хромосом. Форма хромосом: а – одноплечая (акроцентрическая); б – неравноплечая (субметацентрическая); в – равноплечая (метацентрическая).

Структура хромосомы: 1 –центромера (первичная перетяжка); 2 – вторичная перетяжка; 3 – хромонема; 4 – полухроматиды; 5– хромомера; 6– матрикс; 7– спутник; 8 – вторичная перетяжка (участок хромосомы, отвечающий за синтез ядрышек); 9– эухроматиновый участок; 10 – гетерохроматиновый участок; 11– кинетохор.

Структурной основой хромосомы являются спирально закрученные нити ДНК – хромонемы (рис. 25). Основное вещество хромосомы, в которое погружены хромонемы – матрикс. Гетерохроматиновые участки находятся в сильно спирализованном состоянии (состоянии конденсированного хроматина). Они представляют собой уплотненные участки хромосом, напоминающие бусины и называются хромомерами. Имеются также эухроматиновые участки – участки деспирализующегося хроматина. Некоторые хромосомы имеют спутник – округлое или палочковидное тело, который с хромосомой соединяется тонкой хроматиновой нитью.

В зависимости от расположения центромеры различают следующие морфологические типы хромосом:

1) равноплечие (метацентрические – центромера расположена по середине хромосомы, и поэтому по длине плечи одинаковые);

2) неравноплечие (субметацентрические – центромера смещена к одному из краев, и поэтому по длине плечи разные);

3) одноплечие (акроцентрические – центромера расположена в теломерном участке хромосомы, и поэтому она имеет одно плечо).

Различают гаплоидный набор хромосом в половых клетках (n) и диплоидный набор хромосом в соматических клетках (2n). Совокупность генов в гаплоидном наборе хромосом называется геномом.

Кариотип – совокупность количественных (число, величина) и качественных признаков (форма) диплоидного набора хромосом в соматической клетке.

Правила хромосом

1. Постоянства числа хромосом – у каждого вида число хромосом постоянно.

2. Парности (гомологичности) – хромосомы образуют пары, которые формируются в зиготе, причем одна из хромосом – материнская, а вторая – отцовская (у человека 23 пары, у дрозофилы – 4 пары).

3. Индивидуальности – каждая пара хромосом в кариотипе отличается от других пар хромосом, характеризуется своими особенностями.

4. Непрерывности – каждая хромосома воспроизводит себе подобную, что обусловлено удвоением хромосом с последующим делением клеток.

В 1972–1973 гг. разработан метод дифференциальной G-окраски хромосом. При окраске основными красителями разные участки хромосом дают разную реакцию. Одни участки интенсивно окрашиваются. Их назвали гетерохроматиновыми. Другие участки слабо окрашиваются. Они названы эухроматиновыми. Под микроскопом каждая окрашенная хромосома имеет характерную для нее последовательность окрашенных и слабо окрашенных полос (сегментов). Это позволяет идентифицировать хромосомы и определять, в каком ее сегменте произошли нарушения.

https://studopedia.org/12-36658.html

Способы деления клеток

Клеточный цикл– период жизни клетки от момента ее образования путем деления материнской до собственного деления.

Способы деления соматических клеток:

1) деление надвое, или бинарное;

2) амитоз – прямое деление;

3) митоз – непрямое деление;

4) мейоз – редукционное деление.

Деление надвое, или бинарное характерно для клеток прокариот (бактерий), в которых имеется нуклеоид – генетический аппарат бактериальной клетки (бактериальная хромосома). Представляет собой кольцевидную молекулу ДНК, не соединенную с гистонами. Нуклеоид обычно находится в центре клетки и не отграничен своей мембраной от содержимого клетки. Деление нуклеоида происходит после завершения репликации ДНК. Расхождение дочерних ДНК обеспечивается ростом клеточной мембраны. Перед делением клетки ДНК удваивается, и образуются 2 кольцевые молекулы ДНК. Затем клеточная мембрана врастает в цитоплазму, встраивается между 2 молекулами ДНК и делит клетку надвое.

Амитоз – прямое деление интерфазного ядра клетки путем перетяжки, при котором не происходит образование веретена деления. При амитозе ядро делится, а цитоплазма может оставаться неразделенной. В этом случае хромосомы распределяются неравномерно. Путем амитоза делятся клетки, в которых протекают патологические процессы, например, клетки злокачественных опухолей. У человека и животных амитотически делятся клетки печени, хрящевой ткани, роговицы глаза. У растений амитотически делятся клетки эндосперма. Признаки, характеризующие амитоз:

1) деление ядра может происходить без деления цитоплазмы;

2) встречается он в специализированных клетках (в клетках хрящевой ткани, роговицы глаза);

3) клетка, в которой произошел амитоз, не способна к митозу.

Митоз – основной тип деления эукариотических клеток.

Митоз – это непрямое деление соматических клеток эукариотических организмов, при котором дочерние ядра несут такое же число хромосом, что и родительская клетка. Митоз обеспечивает увеличение числа клеток в организме, рост, процессы регенерации.В 1874 г. И.Д. Чистяков описал некоторые фазы митоза у спор плауна и хвоща. Затем детально исследовали митоз немецкий ботаник, Э. Страсбургер (1876–1879 гг.) – в клетках растений и немецкий цитолог, В. Флемминг (1882 г.) – в клетках животных.

Митотический цикл – совокупность процессов, происходящих в клетке при подготовке ее к делению и в период ее деления.

Митотический цикл подразделяется на интерфазу и митоз (рис. 26). Интерфаза – промежуток времени между делениями клетки. Интерфаза в свою очередь подразделяется на три фазы – G1 , S, G2.

В постмитотическом (пресинтетическом) периоде – фаза G1 идет подготовка клетки к удвоению ДНК: интенсивный рост клетки; активный биосинтез РНК, белков, липидов, углеводов, АТФ и ферментов.

В синтетическом периоде – фаза S , длительность которого составляет 6–8 часов, осуществляется главный процесс – репликация ДНК (удвоение хромосом). Способ синтеза ДНК – репликация, или самоудвоение молекулДНК. В ходе репликации происходит передача наследственной информации от материнской ДНК к дочерней ДНК путем точного ее воспроизведения. В результате репликации ДНК каждая хромосома удваивается и состоит из двух хроматид. Хроматиды соединены в центромерной области.

В премитотическом (постсинтетическом) периоде – фаза G2, длящемся от 2 до 6 часов, происходит: удвоение органелл; синтез белков, липидов, углеводов, синтез АТФ; синтезируются белки, необходимые для образования микротрубочек веретена деления.

Биосинтез белка. Решение типовых задач - student2.ru

Рис. 26. Схема митотического цикла

В делении животных клеток принимает участие органелла – клеточный центр (центросома). Это немембранная органелла, расположенная около ядра, в цитоплазме клетки. Клеточный центр участвует в формировании веретена деления при воспроизводстве клеток. Хромосомы в интерфазе удвоены, и, вступая в митоз, состоят из двух сестринских хроиматид. Митоз (М) подразделяется на 4 фазы: профазу, метафазу, анафазу и телофазу (рис. 27).

Профаза – стадия митоза, в ходе которой происходит конденсация хромосом, распад ядрышек, начинает формироваться веретено деления. В профазе каждая хромосома состоит из двух хроматид, соединенных между собой в области центромеры. В конце профазы исчезает ядрышко, центриоли расходятся к полюсам клетки. Возникает митотическое веретено, состоящее из микротрубочек.

Метафаза – стадия митоза, при которой хромосомы выстраиваются на экваторе веретена, образуя метафазную пластинку.В начале метафазы разрушается ядерная оболочка. Каждая хромосома прикрепляется своим центральным участком (центромерой) к одной из микротрубочек. Имеется также кинетохор, который находится вблизи центрометы и регулирует расположение и направление движения хромосом. В метафазе хромосомы располагаются в экваториальной области клетки, образуют метафазную пластинку.

Хроматиды хорошо различимы во время метафазы митоза, когда хромосома состоит из двух хроматид.

Анафаза – стадия митоза, характеризующаяся расхождением сестринских хроматид к противоположным полюсам клетки.Это самая короткая стадия митоза. После деления центромеры хроматиды расходятся в дочерние ядра и становятся самостоятельными хромосомами.

Движение хромосом осуществляется благодаря кинетохору и нитям веретена, которые сокращаются и растягивают хроматиды от экватора к полюсам клетки

Телофаза – стадия митоза, характеризующаяся формированием дочерних ядер. У полюсов клетки хромосомы деспирализуются и приобретают форму длинных нитей, что характерно для неделящегося ядра. Формируются дочерние ядра, а в них – ядрышки. В дочерних ядрах образуются ядерная оболочка, нуклеоплазма. На протяжении телофазы происходит цитокинез – деление цитоплазмы, в результате чего две идентичные дочерние клетки отделяются друг от друга. Они являются генетической копией материнской клетки и содержат диплоидный набор хромосом – 2nc.

Биосинтез белка. Решение типовых задач - student2.ru

Рис. 27. Фазы митоза животной клетки: А–В профаза; Г– прометафаза; Д– метафаза; Е– анафаза; Ж– телофаза; З– цитокинез

Биологическое значение митоза. Митоз обеспечивает генетическую преемственность поколений клеток, генетическую стабильность, т. е. видовое постоянство числа хромосом в клетках.

Митотический индекс (m)– отношение числа претерпевающих митоз клеток в ткани к общему числу клеток ткани или культуры. Митотический индекс определяется по формуле m= Nm / N, где Nm – число претерпевающих митоз клеток в ткани, а N – общее число клеток ткани (1000 клеток). У каждой ткани – свой митотический индекс. Более высокие его показатели характерны для росткового слоя кожи (0,7), верхушечная и боковая меристемы (0,7), эпителия тонкого кишечника (0,78), клеток красного костного мозга (0, 74), а более низкие – для скелетной мышечной ткани (0,0001) и нервной ткани (0,0001).

Мейоз

Мейоз – процесс деления диплоидных клеток половых желез, в ходе, которого наблюдаются редукционное деление, приводящее к уменьшению числа хромосом в дочерних клетках вдвое и уравнительное деление, приводящее к образованию гамет. Мейоз открыт В. Флеммингом в 1882 г. у животных, а Э. Страсбургер в 1888 г. выявил редукцию числа хромосом у растений.

Интерфаза мейоза. В интерфазе происходит удвоение молекул ДНК в синтетическом периоде. При этом удваиваются хромосомы. В каждой хромосоме содержится по 2 хроматиды (2n2c).

1. Первое деление мейоза

Профаза 1. В профазу 1 вступают хромосомы, удвоенные в интерфазе.

Поэтому в начале профазы хромосомы удвоены (диплоидный набор) и в каждой из них содержится по 2 хроматиды (2n2c). Затем осуществляются процессы (рис. 28) конъюгации и кроссинговера. В профазе-1 различают стадии: лептотена, зиготена, пахитена, диплотена, диакинез.

Конъюгация хромосом – процесс попарного временного сближения гомологичных хромосом. Лептотена – стадия тонких нитей. На стадии зиготены гомологичные хромосомы сближаются попарно и образуют тетрады – структуры из четырех хроматид, или биваленты. Вследствие конъюгации каждый бивалент состоит из 4 сестринских хроматид. Формула генетического материала имеет вид 2n4c.

Кроссинговер – перекрест гомологичных хромосом или хроматид, сопровождающийся обменом соответствующими участками между хроматидами (процессом рекомбинации). На стадии пахитены в бивалентах происходит кроссинговер: взаимный обмен идентичными участками по длине гомологичных хромосом, формируются хиазмы – места перекреста хромосом. Поскольку каждая хиазма соответствует одному событию кроссинговера, в котором участвуют две несестринские хроматиды, то по количеству хиазм можно судить об интенсивности процесса кроссинговера. В хромосомном наборе человека число хиазм колеблется от 35 до 66. Возможен обмен участками между несестринскими хроматидами соседних хромосом – (несестринский обмен) или между сестринскими хроматидами – в пределах одной хромосомы (сестринский обмен).

Генетическим следствием кроссинговера является рекомбинация генов, образуется генетически неоднородный материал, возникают генетические различия между хроматидами, что обеспечивает широкую генетическую изменчивость гамет. На стадии диплотены тетрадный комплекс разрушается. Гомологи отталкиваются друг от друга. Диакинез – стадия завершающая профазу мейоза-1, переходная к метафазе-1. Биваленты укорачиваются, разрушается ядро, начинает формироваться веретено деления.

Метафаза 1. Биваленты, уже генетически неоднородные, располагаются в 2 слоя по экватору клетки.

Анафаза 1. В анафазе к полюсам расходятся хромосомы, состоящие из 2 хроматид, т. е. расходятся половинки бивалентов. Этот процесс называется редукционное деление, в результате которого образуются две клетки, в которых содержится по одной хромосоме, но каждая хромосома состоит из двух хроматид. Формируется гаплоидный набор хромосом. Поэтому формула генетического материала в анафазе-1 имеет вид – n2c).

Телофаза 1. Образуются 2 клетки с гаплоидным набором хромосом и удвоенным количеством ДНК. Веретено деления разрушается. Появляется ядерная оболочка. В конце телофазы 1 происходит цитокинез (деление цитоплазмы с помощью перетяжки), кроме того, формируются диады, т.е. в каждую клетку попадают 2 сестринские хроматиды, соединенные центромерой.

Итак, уже после первого мейотического деления в клетке содержится гаплоидный набор хромосом, и каждая хромосома состоит из двух хроматид.

2. Второе деление мейоза – уравнительное деление (митоз мейоза). Между первым и вторым делениями мейоза присутствует период – интеркинез. В отличие от интерфазы в интеркинезе не реплицируется ДНК, и удвоение хромосом не происходит.

Второе деление мейоза включает такие же фазы, что и первое деление –профазу-2, метафазу-2, анафазу-2, телофазу-2.

В профазе-2 и метафазе-2 мейоза еще сохраняются по две хроматиды в каждой хромосоме. В профазе II мейоза хромосомный набор клетки можно записать в виде формулы 1 n 2 c (n – число хромосом, c – число хроматид).

В анафазе-2 сестринские хроматиды расходятся к полюсам клетки, и каждая из них становится самостоятельной хромосомой. В результате расхождения хроматид к полюсам клетки происходит уравнительное деление.

В телофазе -2 формула генетического материала имеет вид n c.

Биосинтез белка. Решение типовых задач - student2.ru

Рис. 28. Стадии мейоза. Поведение хромосом. Отцовские хромосомы окрашены в черный цвет, материнские – в белый.

Таким образом, мейоз состоит из двух последовательных делений (редукционного и уравнительного). Перед первым делением мейоза, в интерфазе, происходит синтез ДНК, вследствие чего, в каждой хромосоме будет по две хроматиды (однократная репликация ДНК – 2n2c). Редукционное деление заканчивается образованием двух клеток, содержащих гаплоидный набор хромосом, состоящих их двух хроматид (1n2c). Перед вторым делением в мейозе отсутствует интерфаза. Поэтому второму делению не предшествует синтез ДНК и удвоение хромосом. В результате уравнительного деления (митоза мейоза) из одной исходной диплоидной клетки половой железы образуются 4 гаплоидные генетически разнородные клетки. После уравнительного деления формула генетического материала имеет вид – 1n1c.

Биологическое значение мейоза состоит: 1) в формировании генетически разнообразного материала, вследствие кроссинговера; 2) в разнообразии видов, т. к. мейоз служит основой комбинативной изменчивости организмов; 3) в формировании гамет, участвующих в половом размножении; 4) в поддержании генетического постоянства видов.

https://studopedia.org/12-36659.html

Задачи для самостоятельного решения. 1. Диплоидный набор клетки составляет 32 хромосомы

1. Диплоидный набор клетки составляет 32 хромосомы. Сколько хроматид направляется к каждому полюсу в анафазе второго мейотического деления.

2. Диплоидный набор клетки составляет 28 хромосом. Сколько хроматид направляется к каждому полюсу в анафазе первого мейотического деления.

3. В клетках пыльцы вишни садовой 16 хромосом. Сколько хроматид в клетках вишни садовой в метафазе -1 и метафазе-2 мейоза.

Гаметогенез – процесс образования и развития гамет. Гамета – половая гаплоидная клетка, которая обеспечивает передачу наследственной информации. Выделяют два типа гаметогенеза: сперматогенез и овогенез.

Сперматогенез – процесс образования мужских гамет – сперматозоидов. Процесс сперматогенеза осуществляется в мужских половых гонадах из сперматогониев – диплоидных клеток семенника. Он подразделяется на 4 периода:

1) размножение (митоз);

2) рост (соответствует интерфазе, когда клетки увеличиваются в размерах, и происходит репликация ДНК);

3) созревание (мейоз – два деления);

4) формирование сперматозоидов.

Схема процесса сперматогенеза (рис. 29)

1) сперматогонии делятся митозом на 2 дочерние клетки – сперматоциты первого порядка;

2) сперматоциты первого порядка делятся мейозом (первое деление) на 2 дочерние клетки – сперматоциты 2 порядка

3) сперматоциты 2-го порядка вступают во второе деление мейоза, в результате которого образуются 4 гаплоидные сперматиды

4) сперматиды после периода формирования превращаются в зрелые сперматозоиды

Половые клетки развиваются в половых железах, где различают три зоны: размножения, роста, созревания половых клеток. Зона размножения находится по периферии половой железы. Здесь находятся первичные половые клетки, которые размножаются путем митоза. Затем первичные половые клетки попадают в зону роста, где они растут и достигают морфологической зрелости. Далее половые клетки переходят в зону созревания, где проходят два деления мейоза (редукционное и митоз мейоза, или уравнительное).

В семеннике выделяют три зоны развития половых клеток:

1) размножения сперматогониев, расположенная по периферии семенника;

2) роста;

3) созревания (двух делений мейоза).

Биосинтез белка. Решение типовых задач - student2.ru

Рис. 29. Схема сперматогенеза

Сперматозоиды – мелкие подвижные клетки. В них выделяют головку, шейку и хвост (рис. 30). В передней части головки находится акросома, по форме пузырек, в котором содержится фермент гиалуронидаза, обладающий способностью растворять оболочки яйцеклетки в процессе оплодотворения. Большая часть головки сперматозоида занята ядром, а цитоплазма располагается только по периферии. В шейке расположены центриоли и митохондрии. При оплодотворении в яйцеклетке оказывается только ядро и центриоли сперматозоида, а другие органеллы не попадают в яйцеклетку. Митохондрии, содержащиеся в шейке, вырабатывают энергию для движения сперматозоида.

Биосинтез белка. Решение типовых задач - student2.ru

Рис. 30. Строение сперматозоида

Оогенез – процесс образования женских половых клеток – яйцеклеток из оогониев – диплоидных клеток яичника. Он подразделяется на 4 периода:

1) размножение (митоз);

2) рост (в интерфазе происходит рост клеток и репликация ДНК);

3) созревание (мейоз);

4) формирование яйцеклеток

Схема процесса оогенеза (рис. 31)

1. В зоне размножения в яичнике находятся оогонии – первичные половые клетки, делящиеся митозом.

2. Отдельные оогонии вступают в период роста, при этом клетки увеличиваются, и образуются ооциты первого порядка. Зрелые ооциты первого порядка (граафовы пузырьки) подходят к поверхности яичника, при этом стенка яичника разрывается, и ооцит первого порядка попадает в маточную трубу. Происходит захватывание ооцита бахромками маточной трубы.

3. Далее ооциты первого порядка вступают в период созревания и претерпевают мейоз. Из ооцита первого порядка в результате первого деления мейоза образуются ооцит второго порядка и первое полярное (направительное) тельце.

4. Ооциты второго порядка вступают во второе мейотическое деление. В результате второго деления формируется одна зрелая яйцеклетка (крупная клетка) и 3 полярных тельца, которые рассасываются и служат питательной средой для яйцеклетки. Таким образом, период созревания, два деления мейоза, происходят в маточной трубе.

В ходе оогенеза, как и сперматогенеза, наблюдается процесс дифференцировки клеток, приводящий к образованию гамет.

Биосинтез белка. Решение типовых задач - student2.ru

Рис. 31. Схема оогенеза

Яйцеклетка – неподвижная клетка, крупная (размеры от 100 мкм до 1 см), которая имеет несколько оболочек, состоящих из гликопротеидов, содержит большое количество цитоплазмы, питательных веществ и ядро, митохондрии, рибосомы (рис. 32). В цитоплазме яйцеклетки содержатся митохондрии, где имеются кольцевые ДНК, через которые передается генетическая информация. Поэтому цитоплазма яйцеклетки обладает митохондриальной наследственностью. Яйцеклетка содержит все органеллы, характерные для эукариотической клетки.

Биосинтез белка. Решение типовых задач - student2.ru

Рис. 32. Строение яйцеклетки

Оплодотворение – слияние зрелых гамет – яйцеклетки и сперматозоида, содержащих гаплоидный набор хромосом, с образованием зиготы (2n), из которой развивается многоклеточный организм.

Процесс оплодотворения включает 2 этапа (рис. 33):

1) проникновение головки сперматозоида в яйцеклетку

2) слияние гаплоидных ядер обоих гамет и образование зиготы

Зигота – клетка, образующаяся в результате слияния гамет разного пола.

Биосинтез белка. Решение типовых задач - student2.ru

Рис. 33. Стадии оплодотворения яйцеклетки и начала деления зиготы у животных: 1 – сперматозоид, содержащий две хромосомы, прикрепляется к поверхности яйцеклетки; 2 – сперматозоид проник в яйцеклетку; 3 – слияние ядер сперматозоида и яйцеклетки и формирование в зиготе диплоидного числа хромосом; 4 – удвоение хромосом; 5 – метафаза первого деления.

15. Выберите пару из перечисленных триплетов нуклеотидов, которые не кодируют аминокислоту, а служат сигналом о прекращении синтеза полипептидной цепи в рибосоме: а) УАГ, ГАГ; б) УАА, УГА; в) ААГ, УГА.

16. Как называется свойство генетического кода, свидетельствующее о том, что он одинаков у организмов, стоящих на разных уровнях развития: а) неперекрываемость; б) дискретность; в) универсальность; г) однозначность.

27. Первая закономерность правила Чаргаффа:

а) А=Г; б) А=Т; в) А=Ц.

28. Вторая закономерность правила Чаргаффа: а) А+Г=Т+Ц; б) А+Т=Г+Ц; в) А+У=Г+Ц.

29. Транскрибируемый участок цепи ДНК, кодирующий полипептид, имеет следующую последовательность нуклеотидов: ТТТЦГАГЦАААА. Укажите антикодоны т-РНК, принимающие участие в биосинтезе данного полипептида: а) АААГЦУЦГУУУУ; б) ТТТЦГАГЦАААА; в) АААГЦТЦГТТТТ; г) УУУЦГАГЦАААА.

30. Диплоидный набор клетки составляет 64 хромосомы. Сколько хроматид направляется к каждому полюсу в анафазе второго мейотического деления? а) 8; б) 16; в) 32; г) 64.

31. Отметьте признаки, характерные для и-РНК: а) одна полинуклеотидная цепь; б) две полинуклеотидные цепи; в) содержит урацил; г) содержит тимин; д) содержит рибозу; е) содержит дезоксиоибозу.

32. Сколько адениловых нуклеотидов содержится во фрагменте молекулы ДНК, если в нем обнаружено 50 цитидиловых нуклеотидов, что составляет 20 % от общего количества нуклеотидов в данном фрагменте ДНК? а) 50; б) 75; в) 100.

https://studopedia.org/12-36660.html

Наши рекомендации