Деление клетки и воспроизведение.
Деление клетки — биологический процесс, лежащий в основе размножения и индивидуального развития всех живых организмов. Наиболее широко распространенная форма воспроизведения клеток у живых организмов — непрямое деление, или митоз.В процессе митоза различают четыре фазы: профазу, метафазу, анафазу и телофазу.
I. Профаза — самая продолжительная фаза митоза. В ней спирализируются и вследствие этого утолщаются хромосомы, состоящие из двух сестринских хроматид, удерживаемых вместе центромерой. К концу профазы ядерная мембрана и ядрышки исчезают и хромосомы рассредоточиваются по всей клетке. В цитоплазме к концу профазы центриоли отходят к полосам и образуют веретено деления.
II. Метафаза — хромосомы продолжают спирализацию, их центромеры располагаются по экватору (в этой фазе они наиболее видны). К ним прикрепляются нити веретена деления.
III. Анафаза — делятся центромеры, сестринские хроматиды отделяются друг от друга и за счет сокращения нитей веретена отходят к противоположным полюсам клетки.
IV. Телофаза — делится цитоплазма, хромосомы раскручиваются, вновь образуются ядрышки и ядерные мембраны. После этого образуется перетяжка в экваториальной зоне клетки, разделяющая две сестринские клетки.
Мейо́з или редукцио́нное деле́ние клетки — деление ядра эукариотической клетки с уменьшением числа хромосом в два раза.
Мейоз состоит из 2 последовательных делений с короткой интерфазой между ними.
Профаза I — профаза первого деления очень сложная и состоит из 5 стадий:
· Лептотена, или лептонема — упаковка хромосом, конденсация ДНК с образованием хромосом в виде тонких нитей (хромосомы укорачиваются).
· Зиготена, или зигонема — происходит конъюгация — соединение гомологичных хромосом с образованием структур, состоящих из двух соединённых хромосом, называемых тетрадами или бивалентами и их дальнейшая компактизация.
· Пахитена,' или пахинема' — (самая длительная стадия) — в некоторых местах гомологичные хромосомы плотно соединяются, образуя хиазмы. В них происходит кроссинговер — обмен участками между гомологичными хромосомами.
· Диплотена, или диплонема — происходит частичная деконденсация хромосом, при этом часть генома может работать, происходят процессы транскрипции (образование РНК), трансляции (синтез белка); гомологичные хромосомы остаются соединёнными между собой. У некоторых животных в ооцитах хромосомы на этой стадии профазы мейоза приобретают характерную форму хромосом типа ламповых щёток.
· Диакинез — ДНК снова максимально конденсируется, синтетические процессы прекращаются, растворяется ядерная оболочка; центриоли расходятся к полюсам; гомологичные хромосомы остаются соединёнными между собой.
К концу Профазы I центриоли мигрируют к полюсам клетки, формируются нити веретена деления, разрушаются ядерная мембрана и ядрышки
Метафаза I — бивалентные хромосомы выстраиваются вдоль экватора клетки.
Анафаза I — микротрубочки сокращаются, биваленты делятся, и хромосомы расходятся к полюсам. Важно отметить, что, из-за конъюгации хромосом в зиготене, к полюсам расходятся целые хромосомы, состоящие из двух хроматид каждая, а не отдельные хроматиды, как в митозе.
Телофаза I — хромосомы деспирализуются и появляется ядерная оболочка.
Второе деление мейоза следует непосредственно за первым, без выраженной интерфазы: S-период отсутствует, поскольку перед вторым делением не происходит репликации ДНК.
Профаза II — происходит конденсация хромосом, клеточный центр делится и продукты его деления расходятся к полюсам ядра, разрушается ядерная оболочка, образуется веретено деления, перпендикулярное первому веретену.
Метафаза II — унивалентные хромосомы (состоящие из двух хроматид каждая) располагаются на «экваторе» (на равном расстоянии от «полюсов» ядра) в одной плоскости, образуя так называемую метафазную пластинку.
Анафаза II — униваленты делятся и хроматиды расходятся к полюсам.
Телофаза II — хромосомы деспирализуются и появляется ядерная оболочка.
Задача
320 растений с пурпурными цветками и колючими коробочками
312 с пурпурными цветками и гладкими коробочками. Это можно принять как 1:1. А такое соотношение бывает при анализирующем скрещивании.
Так как в F1нет ни одного цветка белого, значит, первый родитель у нас был полностью доминант по окрасу- ААbb, а так как коробочки разные, то второй родитель по второму признаку - гетерозигота - ааВb. Итак, имеем:
Р: ААbb*ааВb
гаметы: Аb + (аВ +аb)
F1: АаВb + Ааbb
320 432
Характер наследования - доминантный
Экзаменационный билет 22
1. Наследственная изменчивость организмов как основа эволюции.
Биологи различают наследственную и ненаследственную изменчивость. К наследственной изменчивости относят такие изменения признаков организма, которые определяются генотипом и сохраняются в ряду поколений. К ненаследственной изменчивости, которую Дарвин назвал определенной, а теперь называют модификационной, или фенотипической, изменчивостью, относят изменения признаков организма; не сохраняющиеся при половом размножении.
Наследственная изменчивость представляет собой изменение генотипа, ненаследственная изменчивость — изменение фенотипа организма.
Мы познакомились с наследственной изменчивостью, возникающей в результате комбинаций генов и их взаимодействия. Комбинация генов осуществляется на основе двух процессов: 1) независимого распределения хромосом в мейозе и их случайного сочетания при оплодотворении; 2) перекреста хромосом и рекомбинаций генов. Наследственную изменчивость, обусловленную комбинацией и рекомбинацией генов, принято называть комбинативной изменчивостью. При данном типе изменчивости сами гены не изменяются, изменяются их сочетание и характер взаимодействия в системе генотипа. Однако данный тип наследственной изменчивости следует рассматривать как вторичное явление, а первичным следует считать мутационное изменение гена.
Источником для естественного отбора являются наследственные изменения — как мутации генов, так и их рекомбинации.
Мутации происходят в самых различных направлениях; они не могут быть приспособительными для самого организма, поскольку возникают в единичных клетках
И их действие реализуется только в потомстве. Не фактор, вызвавший мутацию, а только отбор оценивает приспособительное знание мутации. Поскольку направление и темп эволюции определяются естественным отбором, а последний контролируется многими факторами внутренней и внешней среды, создается ложное представление об изначальной адекватной целесообразности наследственной изменчивости.
Отбор на основе единичных мутаций «конструирует» системы генотипов, отвечающих требованиям тех постоянно действующих условий, в которых существует вид.
Термин «мутация» впервые был предложен Г. де Фризом в его классическом труде «Мутационная теория» (1901 —1903гг.). Мутацией он назвал явление скачкообразного, прерывного изменения наследственного признака. Основные положения теории де Фриза до сих пор не утратили своего значения, и поэтому их следует здесь привести:
1. мутация возникает внезапно, без всяких переходов;
2. новые формы вполне константны, т. е. устойчивы;
3. мутации в отличие от ненаследственных изменений (флуктуаций) не образуют непрерывных рядов, не группируются вокруг среднего типа (моды). Мутации являются качественными изменениями;
4. мутации идут в разных направлениях, они могут быть как полезными, так и вредными;
5. выявление мутаций зависит от количества особей, проанализированных для обнаружения мутаций;
6. одни и те же мутации могут возникать повторно.
2. Митоз. Генетическая роль митоза.
Генетическая роль:
Митоз лежит в основе роста и вегетативного размножения всех организмов, имеющих ядро - эукариот. Благодаря митозу поддерживается постоянство числа хромосом в клеточных поколениях, т. е. дочерние клетки получают такую же генетическую информацию, которая содержалась в ядре материнской клетки.
Митоз – это деление соматических клеток (клеток тела). Биологическое значение митоза – размножение соматических клеток, получение клеток-копий (с тем же самым набором хромосом, с точно такой же наследственной информацией). Все соматические клетки организма получаются из одной исходной клетки (зиготы) путем митоза.
Профаза
· хроматин спирализуется (скручивается, конденсируется) до состояния хромосом
· ядрышки исчезают
· ядерная оболочка распадается
· центриоли расходятся к полюсам клетки, в цитоплазме начинается формирование веретена деления
2) Метафаза – заканчивается формирование веретена деления: хромосомы выстраиваются по экватору клетки, образуется метафазная пластинка
3) Анфаза – дочерние хромосомы отделяются друг от друга (хроматиды становятся хромосомами) и расходятся к полюсам
Телофаза
· хромосомы деспирализуются (раскручтваются, деконденсируются) до состояния хроматина
· появляются ядро и ядрышки
· нити веретена деления разрушаются
· происходит цитокинез – разделение цитоплазмы материнской клетки на две дочерних
Продолжительность митоза – 1-2 часа.
Клеточный цикл
Это период жизни клетки от момента её образования путем деления материнской клетки до собственного деления или смерти.
Клеточный цикл состоит из двух периодов:
· интерфаза (состояние, когда клетка НЕ делится);
· деление (митоз или мейоз).
Интерфаза состоит из нескольких фаз:
· пресинтетическая: клетка растет, в ней происходит активный синтез РНК и белков, увеличивается количество органоидов; кроме этого, происходит подготовка к удвоению ДНК (накопление нуклеотидов)
· синтетическая: происходит удвоение (репликация, редупликация) ДНК
· постсинтетическая: клетка готовится к делению, синтезирует необходимые для деления вещества, например белки веретена деления.
3. Решите задачу: У азиатской щучки коричневая окраска определяется геном В, а голубая – b. Ген В может находиться в X- и Y-хромосомах, а его аллель никогда не встречается в Y-хромосоме. Если скрещиваются голубая самка с гомозиготным коричневым самцом, то какое потомство по гнотипу и фенотипу будет в F1 и F2? Самки у этой аквариумной рыбки является гомогаметным полом.
Экзаменационный билет 23
1. Митотический цикл и фазы митоза.
Существует два типа деления клеток — митоз и мейоз. Митоз — обычное деление соматических клеток, благодаря которому организм растет, развивается и регенерирует ткани. Митотическое деление в норме заканчивается появлением двух дочерних клеток, каждая из которых содержит набор хромосом и генов, идентичных родительской клетке. В течение жизни соматических клеток возможны десятки и даже сотни последовательных митозов.
Митотический цикл — это жизнедеятельность клетки от деления до следующего деления. Митотический цикл в малодифференцированных клеточных популяциях занимает около суток. Жизненный цикл может быть равен митотическому, но в отличие от него — это более широкое понятие и охватывает постмитотические популяции клеток, потерявших способность к делению с высокой степенью дифференциации.
Если клетка делится и митотический с клеточным циклом равны, то цикл означает многократное повторение некоторой последовательности событий, причем конечное завершается к началу первого следующей последовательности. Митотический цикл заканчивается телофазой с делением клетки, а новый начинается при образовании двух новых клеток. Митотический цикл состоит из митоза и интерфазы. В интерфазе различают последовательные фазы G1, S и G2.
G1-фаза (пресинтетический период) — обычно самая продолжительная и следует за телофазой митоза. Она длится от 10 ч до нескольких суток: у быстро делящихся клеток она более короткая. Во время G1-фазы происходит подготовка к удвоению хромосом, клетка интенсивно синтезирует РНК и белки, растет, увеличивается количество рибосом, митохондрий. Клетка восстанавливает размеры предшественницы. Достигнув определенных размеров, клетка вступает в следующую фазу (синтетический период), но это происходит не всегда. Часть клеток продолжает накапливать структурные элементы и не делится. Тогда G1-фаза затягивается, и клетки могут прекратить делиться, переходя в так называемую G0-фазу.
Клетки могут находиться в G0-фазе длительное время, начинают расти, дифференцироваться, достигая состояния терминальной (окончательной) дифференцировки. Такая клетка обычно теряет способность к делению и в этом случае окончание клеточного периода сопровождается гибелью клетки.
В S-фазу интерфазы (синтетический период) в клетке продолжается синтез белка, но этот процесс не главный. Ведущим процессом является репликация (удвоение) ДНК, которая одновременно идет во многих точках ДНК (репликонах). Начинается также удвоение центриолей в клеточном центре. В большинстве клеток синтетический период длится 8…12 ч. К окончанию синтетического периода в клетке имеется тетраплоидный набор ДНК и удвоенный набор центриолей.
В G2-фазу интерфазы (постсинтетический период) синтез РНК снижается, продолжается остаточный синтез белка и накапливается энергия для митоза. В этот период синтезируются белки, необходимые для нормального деления клетки, в том числе тубулины — белки микротрубочек. В клетке тетраплоидный набор ДНК. Дочерние центриоли увеличиваются в размерах и достигают размеров зрелых органелл. Эта фаза длится 2…4 ч.
2. Модификационная изменчивость.
Модификационная изменчивость - это эволюционно закрепленные реакции организма на изменения условий внешней среды при неизменном генотипе. Такой тип изменчивости имеет две главные особенности. Во- первых, изменения затрагивают большинство или все особи в популяции и у всех них проявляются одинаково. Во-вторых, эти изменения обычно имеют приспособительный характер. Как правило, модификационные изменения не передаются следующему поколению. Обычно, говоря о модификационных изменениях, имеют в виду морфологические изменения (например, изменение формы листьев) или изменения окраски (некоторые примеры приведены в п. Влияние генотипа и среды на фенотип ). Однако нередко в эту группу включают и физиологические реакции. Регуляция работы генов лактозного оперона кишечной палочки представляет собой пример такой физиологической реакции. Напомним, в чем она состоит. При отсутствии в среде обитания бактерий глюкозы и при наличии лактозы бактерия начинает синтезировать ферменты для переработки этого сахара. Если же в среде появляется глюкоза, эти ферменты исчезают и бактерия возвращается к стандартному обмену веществ.
Другой пример физиологической реакции - увеличение числа эритроцитов в крови у человека, поднявшегося в горы. Когда человек спускается вниз, где содержание кислорода нормально, число эритроцитов возвращается к норме.
В обоих примерах модификационные изменения имеют ясно выраженный приспособительный характер, поэтому их часто называют физиологическими адаптациями.
Большинство модификаций не наследуется. Однако известны и длительные модификационные изменения, сохраняющиеся и в следующем поколении
Модификационная изменчивость характеризуется рядом особенностей, важнейшими из которых являются следующие.
1. Модификации часто носят обратимый характер, т. е. со сменой внешних условий у особей меняется степень выраженности тех или иных признаков. Например, у взрослого человека в зависимости от питания и образа жизни изменяется масса тела, у коров могут изменяться удои, у кур — яйценоскость.
2. В большинстве случаев модификации носят адекватный характер, т. е. степень выраженности признака находится в прямой зависимости от интенсивности и продолжительности действия того или иного фактора. Например, чем больше времени человек проводит под прямыми солнечными лучами, тем больше меланина синтезируется в открытых участках кожи и соответственно темнее ее цвет. Поэтому модификационную изменчивость еще называют определенной.
3. Модификации носят адаптивный (приспособительный) характер. Это означает, что в ответ на изменившиеся условия среды у особи проявляются такие фенотипические изменения, которые способствуют ее выживанию. Например, у человека, оказавшегося высоко в горах, увеличивается содержание эритроцитов в крови, чтобы обеспечить клетки тела кислородом.
4. Одним из основных свойств модификаций является их м а с с о в о с ть. Это выражается в том, что один и тот же фактор вызывает примерно одинаковые изменения у особей, сходных генотипически. Поэтому модификационную изменчивость называют групповой. Например, при перемещении овец в более холодные условия у всех особей шерсть становится более густой.
3. Решите задачу: В Северной Каролине изучали появление в некоторых семьях лиц, характеризующихся недостатком фосфора в крови. Это явление было связано с заболеванием специфической формой рахита, не поддающейся лечению витамином D. В потомстве от браков 14 мужчин, больных этой формой рахита, со здоровыми женщинами родились 21 дочь и 16 сыновей. Все дочери страдали недостатком фосфора в крови, а все сыновья были здоровы. Какова генетическая обусловленность этого заболевания?
Экзаменационный билет 24
1. Мейоз. Генетическая роль мейоза.
Мейоз — разновидность митоза, в результате которого из диплоидных (2п) соматических клеток половых желез образуются гаплоидные гаметы (1n).При оплодотворении ядра гаметы сливаются, и восстанавливается диплоидный набор хромосом. Таким образом, мейоз обеспечивает сохранение постоянного для каждого вида набора хромосом и количества ДНК.
Мейоз представляет собой непрерывный процесс, состоящий из двух последовательных делений, называемых мейозом I и мейозом II. В каждом делении различают профазу, метафазу, анафазу и телофазу. В результате мейоза I число хромосом уменьшается вдвое (редукционное деление):при мейозе II гаплоидность клеток сохраняется (эквационное деление).Клетки, вступающие в мейоз, содержат генетическую информацию 2n2хр (рис. 1).
В профазе мейоза I происходит постепенная спирализация хроматина с образованием хромосом. Гомологичные хромосомы сближаются, образуя общую структуру, состоящую из двух хромосом (бивалент) и четырех хроматид (тетрада). Соприкосновение двух гомологичных хромосом по всей длине называется конъюгацией. Затем между гомологичными хромосомами появляются силы отталкивания, и хромосомы сначала разделяются в области центромер, оставаясь соединенными в области плеч, и образуют перекресты (хиазмы). Расхождение хроматид постепенно увеличивается, и перекресты смещаются к их концам. В процессе конъюгации между некоторыми хроматидами гомологичных хромосом может происходить обмен участками — кроссинговер, приводящий к перекомбинации генетического материала. К концу профазы растворяются ядерная оболочка и ядрышки, формируется ахроматиновое веретено деления. Содержание генетического материала остается прежним (2n2хр).
В метафазе мейоза I биваленты хромосом располагаются в экваториальной плоскости клетки. В этот момент спирализация их достигает максимума. Содержание генетического материала не изменяется (2п2хр).
В анафазе мейоза I гомологичные хромосомы, состоящие из двух хроматид, окончательно отходят друг от друга и расходятся к полюсам клетки. Следовательно, из каждой пары гомологичных хромосом в дочернюю клетку попадает только одна — число хромосом уменьшается вдвое (происходит редукция). Содержание генетического материала становится 1n2хр у каждого полюса.
В телофазе происходит формирование ядер и разделение цитоплазмы — образуются две дочерние клетки. Дочерние клетки содержат гаплоидный набор хромосом, каждая хромосома — две хроматиды (1n2хр).
Интеркинез — короткий промежуток между первым и вторым мейотическими делениями. В это время не происходит репликации ДНК, и две дочерние клетки быстро вступают в мейоз II, протекающий по типу митоза.
В профазе мейоза II происходят тс же процессы, что и в профазе митоза. В метафазе хромосомы располагаются в экваториальной плоскости. Изменений содержания генетического материала не происходит (1n2хр). В анафазе мейоза II хроматиды каждой хромосомы отходят к противоположным полюсам клетки, и содержание генетического метериала у каждого полюса становится lnlxp. В телофазе образуются 4 гаплоидные клетки (lnlxp).
Таким образом, в результате мейоза из одной диплоидной материнской клетки образуются 4 клетки с гаплоидным набором хромосом. Кроме того, в профазе мейоза I происходит перекомбинация генетического материала (кроссинговер), а в анафазе I и II — случайное отхождение хромосом и хроматид к одному или другому полюсу. Эти процессы являются причиной комбинативной изменчивости.
Генетическое значение мейоза:
1) является основным этапом гаметогенеза;
2) обеспечивает передачу генетической информации от организма к организму при половом размножении;
3) дочерние клетки генетически не идентичны материнской и между собой.
Атак же, биологическое значение мейоза заключается в том, что уменьшение числа хромосом необходимо при образовании половых клеток, поскольку при оплодотворении ядра гамет сливаются. Если бы указанной редукции не происходило, то в зиготе (следовательно, и во всех клетках дочернего организма) хромосом становилось бы вдвое больше. Однако это противоречит правилу постоянства числа хромосом. Благодаря мейозу половые клетки гаплоидны, а при оплодотворении в зиготе восстанавливается диплоидный набор хромосом
2. Ненаследственная изменчивость как изменение проявления действия генов при реализации генотипа в различных условиях среды.