Полпгенные генетпческпе модели
Одним из центральных допущений генетики количественных признаков, в том числе и психологических, является допущение о возможности суммирования генетических эффектов каждого локуса внутри
Конец страницы №188
Начало страницы №189
генетической системы, включающей несколько локусов. Иными словами, если генетическая система состоит из двух локусов, А и В, то при определении генетического эффекта всей системы генетические эффекты А (аддитивные и доминантные) суммируются с генетическими эффектами В (аддитивными и доминантными). Кроме того, при характеристике общего генетического эффекта этой системы необходимо учитывать эффекты, возникающие в результате взаимодействия между локусами А к В. Эти эффекты называются эпистатическими эффектами.
Эпистатические эффекты. Напомним, что доминантность возникает в результате неаддитивных взаимодействий аллелей в одном ло-кусе. Подобным же образом аллели разных локусов, функционируя в рамках одной генетической системы, могут взаимодействовать, приводя к возникновению так называемого эпистаза. Таким образом, в отличие от доминантности, возникающей в результате взаимодействия аллелей внутри одного локуса, эпистаз есть результат взаимодействия аллелей разных локусов.
Итак, генетические эффекты, возникающие в рамках полигенной модели, бывают трех типов: аддитивные (Л), доминантные (D) и эпистатические (I). Представим это заключение символически:
G = А + D+ I.
Соответственно сказанному выше, G представляет собой сумму всех генетических влияний в рамках полигенной системы; А — сумму всех аддитивных влияний для всех локусов, входящих в данную систему; D отражает все доминантные влияния в данной системе, и / характеризует генетические влияния, которые возникают в результате взаимодействия аллелей разных локусов, включенных в данную
систему.
Фенотипическое значение. Мы рассмотрели представления генетики количественных признаков о генетических влияниях на формирование межиндивидуальной вариативности непрерывно распределенных признаков. Однако совершенно очевидно, что на поведенческие признаки оказывает влияние и среда. Количественная генетическая модель предполагает, что межиндивидуальная вариативность по признаку в популяции определяется как генетическими, так и средовыми факторами. Иными словами,
P=G + E+(GxE),
где Р — наблюдаемые (фенотипические) значения признака в некоторой популяции. Р — функция генетических (G) и средовых (Е) отклонений от, соответственно, генотипического и средового средних, и некоего интеракционистского члена G х Е, который отражает влияния, возникающие в результате взаимодействия генотипа и среды (ГС-взаимодействия и ГС-корреляции).
Конец страницы №189
Начало страницы №190
Как уже было сказано (гл. V), популяцией называется группа индивидов, проживающих на определенной территории, имеющих общий язык, общую историю и культуру и характерный генофонд, сформированный и сохранившийся в результате того, что члены популяции вступают в браки между собой намного чаще, чем с представителями других популяций. Члены популяции похожи друг на друга (или отличаются друг от друга) по набору морфологических, физиологических, психологических и других характеристик, называемых в генетике признаками. Напомним, что измеряемое значение любого признака называется фенотипом (гл. I), он является результатом реализации данного генотипа в данной среде. Популяционный разброс по изучаемому признаку (популяционная вариативность признака) называется фенотипической дисперсией (Vp) и вычисляется по формуле:
где N — количество индивидов в исследуемой популяции, Xt — значение исследуемого признака у /-го члена популяции (т.е. его фенотип), а X — популяционное среднее по исследуемому признаку.
Теперь запишем обе полученные формулы (для G и для Р) в терминах дисперсии:
VG = Cov(G)(G) = Cov(A + D + Г) = VA + VD + V, + 2Cov(A)(T) + + 2Cov(D)(I) + 2Cov(A)(D).
При допущении независимости (т.е. отсутствия корреляции между ними) A, D и /, члены уравнения, отражающие ковариации между этими составляющими генотипической дисперсии, могут быть сокращены. Тогда
V = V + V + V
Иными словами, наблюдаемая генотипическая вариативность в популяции есть результат суммирования вариативности аддитивной, доминантной и эпистатической.
Подобным же образом в терминах дисперсии может быть записано фенотипическое разнообразие людей в популяции:
Vr = Cov(P)(P) = Cov[G + Е + (G x E)]\G + E + (G x £)] = = VG + VE + 2Cov(G)(E) + VG*E .
Иначе говоря, количественные психогенетические модели основаны на допущении, что популяционная фенотипическая вариативность может быть объяснена влиянием генетических (Vc) и средовых факторов (VE), а также гено-средовых эффектов, возникающих в результате соприсутствия этих двух факторов [генотип-средовой ковариации
Конец страницы №190
Начало страницы №191
Cov(G)(E) и генотип-средового взаимодействия (VC,*E)\- Если всю фе-нотипическую изменчивость принять за 100%, то вклады генотипа, среды и генотип-средовых эффектов тоже могут быть выражены в процентах. Иными словами, когда говорят, что вклад генотипа в формирование межиндивидуальной вариативности признака составляет 60%, это означает, что на все остальные составляющие приходится 40%. Распределение фенотипических значений признака в популяции может быть представлено в качестве суммы разбросов определенных значений (см. табл. 8.2).
Таблица 8.2