Хромосомные мутации и их классификации

Хромосомные перестройки (аберрации, мутации)-перемещения генетического материала, приводящие к изменению структуры хромосом в пределах кариотипа.

Внутрихромосомные - дефишенси(концевые нехватки), делеции(выпадения частей хромосом), дупликации(умножения частей хром.), инверсии(изменения чередования генов вследствии поворота участка хромосомы на 1800). Межхромосомные - транслока-ции(перемещение части хромосомы на другую негомологичную ей). Транспозиции и инсерции - изм локализ небольш участков генет материала, включ 1 или несколько генов. Транспозиции могут между негомологичными хромосомами или в 1хр.

Делеции и дефишенси. вследствии нехваток хромосомы укорачиваются и отсутствие участка одного из гомологов приводит к гемизиготному состоянию генов, находящихся в нормальном гомологе. Если теряются доминантные аллели одного из гомологов гете-розиготы, то наблюдается фенотипическое проявление рецессивных аллелей хромосо-мы, незатронутой аберрацией. Поскольку вследствии делеции теряются участки хромо-сом, у гетерозигот по этим перестройкам наблюдаются характерные нарушения конъю-гации гомологов. Более длинная нормальная хромосома образует петлю на участке, соотв делеции. Границы делеций уточняют по нарушению конъюгации и изменению рисунка хромосом. Делеции летальны в гомозиготе. Оч.короткие делеции могут не нарушать жизнеспособности в гомозиготе. Дефишенси устанавливают по тем же критериям. При конъюгации не петля, а 1 короче другой. Примет дефишенси у чел - синдром кошачьего крика, гетерозиготность по дефишенси в 5-й хромосоме, умственная отсталость, рано умирают.

Дупликации - двукратное повторение одного и того же участка хромосомы. Мультипли-кации(амплификации) многократ повтор. Повторы могут происходить в пределах 1 хр. или переноситься на др. Повторы в 1хр. могут распол тандемно(ABCBCDE) или инвер-тировано(ABCCBDE). Причина - неравный кроссинговер. Гетерозиготы по дупликации выявляются - петля при конъюгации. дупликации и др. повторы не оказывают такого отрицательного воздействия на жизнеспособность, как делеции и дефишенси. Роль в эволюции генома - доп участки генет материала, ф-ция кот м.б. изменена в результате мутаций и последущего естественного отбора.

Инверсии - изменение чередования генов,

-перичентрические(захватыв центромеру и включающие ее в инвертированный участок)

-парацентрические(не включ центромеру в инвертиров участок)

Летально если разрыв в жизненноважным генам.

Подавляется кроссинговер если инверсия в гетерозиготе.

У гетерозигот по инверсиям - петли.Если в такой петле произойдет кроссинговер, то в случае парацентрической инверсии возникает 1хроматида с 2 центромерами, которые порвут ее при расхождение в анафазе, образующийся бесцентромерный фрагмент будет потерян. Из 4 гамет полноценными будут только 2. При перицентрической инверсии 2 хроматиды несут делеции по некоторым генам, нет препятствий нормальному расхождению.

Могут способствовать эволюционной дивергенции новых форм, образующихся в преде-лах вида.

Транслокации - реципрокный обмен участками негомологичных хромосом. Изменяется характер сцепления генов. В гетерозиготе по транслокации гены принадлежащие к разным негомологичным хромосомам наследуются как принадлежащие к 1 группе сцепления. Это объясняется тем, что полностью функциональными оказываются только те споры и гаметы, которые несут родительское сочетание хромосом. Характер конъюгации транслоцированных хромосом меняется, образуется фигура креста. Плотная конъюгация оказывается затрудненной вблизи точек разрывов, что приводит к подавлению кроссинговера в этих участках. У гетерозиготы по транслокации в профазе мейоза образуются квадриваленты, а не биваленты, как обычно, поскольку гомологичные

49. Экспрессивность и пенетрантность.

Ген, имеющийся в генотипе в необходимом для проявления количестве (1 аллель для доминантных признаков и 2 аллеля для рецессивных) может проявляться в виде признака в разной степени у разных организмов (экспрессивность) или вообще не проявляться (пенетрантность). Причины:

  • модификационная изменчивость (воздействие условий окружающей среды)
  • комбинативная изменчивость (воздействие других генов генотипа).

Экспрессивность – степень фенотипического проявления аллеля. Например, аллели групп крови АВ0 у человека имеют постоянную экспрессивность (всегда проявляются на 100%), а аллели, определяющие окраску глаз, – изменчивую экспрессивность. Рецессивная мутация, уменьшающая число фасеток глаза у дрозофилы, у разных особей по разному уменьшает число фасеток вплоть до полного их отсутствия.

Пенетрантность – вероятность фенотипического проявления признака при наличии соответствующего гена. Например, пенетрантность врожденного вывиха бедра у человека составляет 25%, т.е. болезнью страдает только 1/4 рецессивных гомозигот. Медико-генетическое значение пенетрантности: здоровый человек, у которого один из родителей страдает заболеванием с неполной пенетрантностью, может иметь непроявляющийся мутантный ген и передать его детям.

50. Охарактеризуйте болезни с наследственной предрасположенностью (мультифакторные)

К заболеваниям, развитие которых зависит от взаимодействия множества факторов, как наследственных, так и средовых, относят диабет, ишемическую болезнь сердца, эссенциальную гипертензию, бронхиальную астму, алкогольный психоз, наркоманию. Сегодня уже известны некоторые гены, обусловливающие предрасположенность к ним. Патогенные мутации в этих генах не обязательно приводят к заболеванию, но риск его развития повышен. Предрасположенность к таким мультифакторным болезням возникает, когда генетическими отклонениями нарушена регуляция нервных процессов, обмена веществ (например, липидов или углеводов) или работа систем обезвреживания чужеродных веществ (ксенобиотиков).

Попав в организм, они разлагаются в два этапа: сначала подвергаются ферментативной модификации, а лишь затем промежуточные метаболиты превращаются в растворимые безвредные соединения и выводятся. Различные варианты генов, кодирующих ферменты системы детоксикации, определяют скорость их работы. При сочетании высокой активности ферментов первого этапа и низкой на втором этапе в организме человека накапливаются промежуточные продукты, обладающие порой даже более высокой токсичностью, чем исходные вещества.

Так, при сниженной активности детоксификационной функции плаценты (фермента плацентарной глютатион-метионинтрансферазы, GSTM1) возрастает риск ранних спонтанных абортов. Генетически детерминированная активность глютатионтрансфераз влияет и на развитие различных форм рака. Например, сочетание определенных мутаций увеличивает риск рака груди у женщин в 3-10 раз, а у курильщиц - в 40 раз.

Эффективность лечения различными препаратами также связана с состоянием генов. Так, лечение эндометриоза (заболевания, встречающегося почти у 10% женщин белой расы) широко используемым препаратом циклофероном у части больных безрезультатно по причинам генетического характера.

Мультифакторные заболевания отличаются от моногенных тем, что связь между генетическими особенностями и вероятностью развития патологии для них гораздо сложнее. В разных популяциях болезнь может вызываться своеобразной комбинацией генетических и средовых факторов. Роль генетических факторов во многом зависит от условий среды и образа жизни человека.

51. Цели, задачи и методы медико-генетического консультирования.

Наиболее распространенным и эффективным методом профилактики нас­ледственных болезней является медико-генетическое консультирование, ко­торое представляет собой один из видов специализированной медицинской помощи населению, направленной на предупреждение появления в семье больного ребенка.

Главная цель генетического консультирования — предупреждение рожде­ния больных детей. Это в первую очередь касается тяжелых и плохо подда­ющихся лечению пороков развития и наследственных болезней, приводящих к физической или психической неполноценности.

Задачами медико-генетического консультирования являются:

1) ретро- и проспективное консультирование семей и больных с наслед­ственной или врожденной патологией;

2) пренатальная диагностика врожденных и наследственных заболеваний ультразвуковыми, цитогенетическими, биохимическими и молекулярно-гене-тическими методами;

3) помощь врачам различных специальностей в постановке диагноза нас­ледственного или врожденного заболевания, если для этого требуются спе­циальные генетические методы исследования

4) объяснение пациенту и его семье в доступной форме о величине риска иметь больное потомство и оказание им помощи в принятии решения;

5) ведение территориального регистра семей и больных с врожденной и следственной патологией и их диспансерное наблюдение;

6) пропаганда медико-генетических знаний среди населения.

Чаще всего в генетическую консультацию обращаются семьи, в которых уже есть один или несколько больных детей с наследственным или врожденным заболеванием и родителей беспокоит вопрос дальнейшего деторождения. Другая группа включает семьи, где болен один из супругов, и родителей пересует прогноз здоровья будущих детей. К третьей группе относятся семьи практически здоровых детей, у которых по линии одного или обоих родителей имеются родственники с наследственной патологией. В четвертую группу входят родители, желающие узнать, какова судьба здоровых братьев и сестер больного ребенка (не возникнет ли аналогичное заболевание у них в дальнейшем, а также у их детей). Кроме перечисленных случаев, необходимо заподозрить наследственную патологию и направить семью в медико-генетический центр при следующих показаниях:

· наличие аналогичных заболеваний или симптомов у нескольких членов семьи;

· первичное бесплодие супругов;

· первичное невынашивание беременности;

· отставание в умственном и физическом развитии;

· рождение ребенка с врожденными пороками развития;

· первичная аменорея, особенно в сочетании с недоразвитием вторичных половых признаков;

· наличие кровного родства между супругами и др.

Особенностью работы генетической консультации является то, что исследуется не только человек, обратившийся за консультацией (пробанд), но и члены его семьи. Для генетической консультации требуются подробные сведения о родственниках пробанда, часто возникает необходимость в углубленном их обследовании. Это приводит к гораздо большим затратам времени, чем на прием больного добым другим специалистом. На первичный прием семьи с составлением «дословной требуется 1 ч 20 мин, на повторный прием — 30 мин.

52. Мейоз – типы деления половых клеток.

Типы мейоза и его биологическое значение

В общем случае в результате мейоза из одной диплоидной клетки образуется четыре гаплоидные клетки. При гаметном мейозе из образовавшихся гаплоидных клеток образуются гаметы. Этот тип мейоза характерен для животных. Гаметный мейоз тесно связан с гаметогенезом и оплодотворением. При зиготном и споровом мейозе образовавшиеся гаплоидные клетки дают начало спорам или зооспорам. Эти типы мейоза характерны для низших эукариот, грибов и растений. Споровый мейоз тесно связан со спорогенезом. Таким образом, мейоз – это цитологическая основа полового и бесполого (спорового) размножения.

Тип деления Фазы Набор хромосом в результате деления (n - хромосомы, с - хроматиды) Число и качество клеток, образую щихся в резуль тате деления Клетки, где происходит деление Распро-странение среди организмов
Митоз (непрямое деление) Интерфаза Профаза Метафаза Анафаза Телофаза 2п 2с (дипло-идный), хромосомы однохрома-тидные Две дипло-идные Сомати- ческие (клетки тела)   Все животные и расти тельные организмы, кроме бактерий и синезеленых (прокариот)
Мейоз: мейоз I (ре дукцион-ное деление) мейоз II (митоти-ческое деление) Интерфаза Профаза I Метафаза I Анафаза I Телофаза I Метафаза II Анафаза II Телофаза II In 2с (гапло-идный), хромосомы двухро- матидные 1n 1с (гапло-идный), хромосомы однохро-матидные Две гапло-идные Две гапло-идные Всего: четыре гапло-идные клетки Половые клетки животных: при овогенезе образуются четыре клетки: одна яйцеклетка и три направи-тельных тельца (отмира- ющие); при сперма- тогенезе все клетки образуют сперма- тозоиды. Сяюрообра-зующие клетки растений: у семенных растений из четырех крупных спор три отмирают, одна остается; мелкие споры все остаются Все животные и растения, кроме прокариот


53. Биосинтез белка в клетке.

Биосинтез белков идет в каждой живой клетке. Наиболее активен он в молодых растущих клетках, где синтезируются белки на построение их органоидов, а также в секреторных клетках, где синтезируются белки-ферменты и белки-гормоны.

Основная роль в определении структуры белков принадлежит ДНК. Отрезок ДНК, содержащий информацию о структуре одного белка, называют геном. Молекула ДНК содержит несколько сотен генов. В молекуле ДНК записан код о последовательности аминокислот в белке в виде определенно сочетающихся нуклеотидов. Код ДНК удалось расшифровать почти полностью. Сущность его состоит в следующем. Каждой аминокислоте соответствует участок цепи ДНК из трех рядом стоящих нуклеотидов.

Например, участок Т—Т—Т соответствует аминокислоте лизину, отрезок А—Ц—А — цистину, Ц—А—А — валину н т. д. Разных аминокислот — 20, число возможных сочетаний из 4 нуклеотидов по 3 равно 64. Следовательно, триплетов с избытком хватает для кодирования всех аминокислот.

Синтез белка — сложный многоступенчатый процесс, представляющий цепь синтетических реакций, протекающих по принципу матричного синтеза.

Поскольку ДНК находится в ядре клетки, а синтез белка происходит в цитоплазме, существует посредник, передающий информацию с ДНК на рибосомы. Таким посредником является и-РНК. :

В биосинтезе белка определяют следующие этапы, идущие в разных частях клетки:

  1. Первый этап — синтез и-РНК происходит в ядре, в процессе которого информация, содержащаяся в гене ДНК, переписывается на и-РНК. Этот процесс называется транскрипцией (от лат. «транскриптик» — переписывание).
  2. На втором этапе происходит соединение аминокислот с молекулами т-РНК, которые последовательно состоят из трех нуклеотидов — антикодонов, с помощью которых определяется свой триплет-кодон.
  3. Третий этап — это процесс непосредственного синтеза полипептидных связей, называемый трансляцией. Он происходит в рибосомах.
  4. На четвертом этапе происходит образование вторич ной и третичной структуры белка, то есть формирование окончательной структуры белка.

Таким образом, в процессе биосинтеза белка образуются новые молекулы белка в соответствии с точной информацией, заложенной в ДНК. Этот процесс обеспечивает обновление белков, процессы обмена веществ, рост и развитие клеток, то есть все процессы жизнедеятельности клетки.

Хромосомы (от греч. «хрома» — цвет, «сома» — тело) — очень важные структуры ядра клетки. Играют главную роль в процессе клеточного деления, обеспечивая передачу наследственной информации от одного поколения к другому. Они представляют собой тонкие нити ДНК, связанные с белками. Нити называются хроматидами, состоящими из ДНК, основных белков (гистонов) и кислых белков.

В неделящейся клетке хромосомы заполняют весь объем ядра и не видны под микроскопом. Перед началом деления происходит спирализация ДНК и каждая хромосома становится различимой под микроскопом. Во время спирализации хромосомы сокращаются в десятки тысяч раз. В таком состоянии хромосомы выглядят как две лежащие рядом одинаковые нити (хроматиды), соединенные общим участком — центромерой.

Для каждого организма характерно постоянное количество и структура хромосом. В соматических клетках хромосомы всегда парные, то есть в ядре есть две одинаковые хромосомы, составляющие одну пару. Такие хромосомы называют гомологичными, а парные наборы хромосом в соматических клетках называют диплоидными.

Так, диплоидный набор хромосом у человека состоит из 46 хромосом, образуя 23 пары. Каждая пара состоит из двух одинаковых (гомологичных) хромосом.

Особенности строения хромосом позволяют выделить их 7 групп, которые обозначаются латинскими буквами А, В, С, D, Е, F, G. Все пары хромосом имеют порядковые номера.

У мужчин и женщин есть 22 пары одинаковых хромосом. Их называют аутосомы. Мужчина и женщина отличаются одной парой хромосом, которые называют половыми. Они обозначаются буквами — большая X (группа С) и маленькая Y (группа С,). В женском организме 22 пары аутосом и одна пара (XX) половых хромосом. У мужчин — 22 пары аутосом н одна пара (XY) половых хромосом.

В отличие от соматических клеток, половые клетки содержат половинный набор хромосом, то есть содержат по одной хромосоме каждой пары! Такой набор называют гаплоидным. Гаплоидный набор хромосом возникает в процессе созревания клеток.

54. Спонтанный и индуцированный мутаген.

Индуцированные мутации — это мутации, вызванные направленным воздействием факторов внешней или внутренней средыю. Индуцированный мутационный процесс может быть контролируемым (например, в эксперименте с целью изучения механизмов действия и/или их последствий) и неконтролируемым (например, в результате облучения при выбросе радиоактивных элементов в среду обитания).

Спонтанные мутации возникают самопроизвольно, в ходе естественного метаболизма клеток и организма без видимого дополнительного воздействия на организм внешних факторов. Спонтанные мутации могут возникать, например, в результате действия химических соединений, образующихся в процессе метаболизма; воздействия естественного фона радиации или УФ-излучения; ошибок репликации и т.д.

Спонтанные мутации (само название говорит за себя) будут возникать даже в том случае, если удастся исключить влияние факторов внешней среды.

55. Генные мутации и их классификация. См. вопр. № 3.

56.Мутации и их классификация. См. вопр. № 30

57. Факторы повышающие риск рождения детей с хромосомными болезнями.

В последние десятилетия многие исследования обращались к причинам возникновения хромосомных болезней. Не вызвало сомнений, что образование хромосомных аномалий (и хромосомных и геномных мутаций) происходит спонтанно. Экстраполировались результаты экспериментальной генетики и предполагался индуцированный мутагенез у человека (ионизирующая радиация, химические мутагены, вирусы). Однако реально причины возникновения хромосомных мутаций в зародышевых клетках или на ранних стадиях развития зародыша до сих пор не расшифрованы.

Проверялись многие гипотезы нерасхождения хромосом (сезонность, рассово-этническая принадлежность, возраст матери и отца, задержанное оплодотворение, порядок рождения, семейное накопление, лекарственное лечение матери, вредные привычки, негормональная и гормональная контрацепция, флюридины, вирусные болезни у женщин). В большинстве случаев эти гипотезы не подтвердились, но генетическая предрасположенность к болезни не исключается. Хотя в большинстве случаев нерасхождение хромосом у человека спорадическое, можно предполагать, что оно в определенной степени генетически детерминировано. Об этом свидетельствуют следующие факты:

  • Потомство с трисомией появляется у одних и тех же женщин повторно с частотой не менее 1%
  • Родственники пробанда с трисомией 21 или другими анеуплойдиями имеют несколько повышенный риск рождения ребенка с анеуплоидией
  • Кровное родство родителей может повышать риск трисомии у потомства
  • Частота зачатий с двойной анеуплоидией может быть выше, чем предсказывается в соответствии с частотой отдельных анеуплоидий.

К биологическим факторам повышения риска нерасхождения хромосом относится возраст матери. Как видно из таблицы (№2) риск рождения ребенка с хромосомной болезнью, обусловленной анеуплоидией, с возрастом матери постепенно повышается, но особенно резко после 35 лет. У женщин старше 45 лет каждая 5-я беременность завершается рождением ребенка с хромосомной болезнью. Наиболее четко возрастная зависимость проявляется для трисомии 21 (болезнь Дауна). Для анеуплоидий по половым хромосомам возраст родителей либо совсем не имеет значения, либо его роль незначительна.

Хромосомные мутации и их классификации - student2.ru

58. Болезни, причиной которых является анеуплоидия.

Анеуплоиди́я (др.-греч. ἀν- — отрицательная приставка + εὖ — полностью + πλόος — кратный + εἶδος — вид) — изменение кариотипа, при котором число хромосом в клетках не кратно гаплоидному набору (n). Отсутствие в хромосомном наборе диплоидного организма одной хромосомы называется моносомией (2n-1); отсутствие двух гомологичных хромосом — нуллисомией (2n-2); наличие дополнительной хромосомы называется трисомией (2n+1) . Анеуплоидия возникает в результате нарушения сегрегации хромосом в митозе или мейозе. Анеуплоидия вызывает у человека некоторые наследственные синдромы. Анеуплоидия по аутосомам нарушает нормальное эмбриональное развитие и является одной из основных причин спонтанных абортов[1]:1. Анеуплоидия характерна для опухолевых клеток, особенно для клеток сóлидных опухолей[2]. Патологический фенотип при анеуплоидии формируется из-за нарушения дозового баланса генов, при моносомии дополнительный негативный вклад оказывает гемизиготное состояние генов моносомной хромосомы

Врождённая анеуплоидия может возникнуть, если в анафазе I мейоза гомологичные хромосомы одной или нескольких пар не разойдутся. В этом случае оба члена пары направляются к одному и тому же полюсу клетки, и тогда мейоз приводит к образованию гамет, содержащих на одну или несколько хромосом больше или меньше, чем в норме. Это явление известно под названием нерасхождение. Когда гамета с недостающей или лишней хромосомой сливается с нормальной гаплоидной гаметой, образуется зигота с нечетным числом хромосом: вместо каких-либо двух гомологов в такой зиготе их может быть три или только один.

В сексологии считается, что большую часть вины за аномалии у младенца несут именно отцовские хромосомы, и именно от отца наследуется этот дефект. По современным оценкам, около 1−4% сперматозоидов здорового мужчины имеют один из видов анеуплоидии. Причины появления ее не известны. Но существуют доказательства того, что на появление хромосомных аномалий влияют некоторые методы лечения (химиотерапия) и пестициды, среди них -органофосфорные соединения, карбариль и фенвалерат. Имеются данные о том, что важную роль в появлении этой аномалии имеет возраст отца и стиль его жизни – курение, чрезмерная любовь к алкоголю и кофе.

59.Опишите изменения, происходящие с генетическим материалом в разные периоды жизненного цикла клетки. См. вопр. № 43.

60. Наследственные болезни аминокислотного обмена (фенилкетонурия, глазо -кожный альбинизм).

Наши рекомендации