Закон гомологических рядов наследственной изменчивости

Закон гомологических рядов Вавилова

Важным теоретическим обобщением исследований Н. И. Вавилова является разработанное им учение о гомологических рядах. Согласно сформулированному им закону гомологических рядов наследственной изменчивости, не только близкие в генетическом отношении виды, но и роды растений образуют гомологические ряды форм, т. е. в генетической изменчивости видов и родов существует определенный параллелизм. Близкие виды благодаря большому сходству их генотипов (почти одинаковому набору генов) обладают сходной наследственной изменчивостью. Если все известные вариации признаков у хорошо изученного вида расположить в определенном порядке, то и у других родственных видов можно обнаружить почти все те же вариации изменчивости признаков. Например, приблизительно одинакова изменчивость остистости колоса у мягкой, твердой пшеницы и ячменя.

Трактовка Н.И.Вавилова. Виды и роды генетически близкие характеризуются сходными рядами наследственной изменчивости, с такой правильностью, что, зная ряд форм в пределах одного вида можно предвидеть нахождение параллельных форм у других видов и родов. Чем ближе родство, тем полнее сходство в рядах изменчивости.

Современная трактовка закона

Родственные виды, роды, семейства обладают гомологичными генами и порядками генов в хромосомах, сходство которых тем полнее, чем эволюционно ближе сравниваемые таксоны. Гомология генов у родственных видов проявляется в сходстве рядов их наследственной изменчивости (1987 г.).

Значение закона

1. Закон гомологических рядов наследственной изменчивости позволяет находить нужные признаки и варианты в почти бесконечном многообразии форм различных видов как культурных растений и домашних животных, так и их диких родичей.

2. Он дает возможность успешно осуществлять поиск новых сортов культурных растений и пород домашних животных с теми или иными требуемыми признаками. В этом заключается огромное практическое значение закона для растениеводства, животноводства и селекции.

3. Его роль в географии культурных растений сопоставима с ролью Периодической системы элементов Д. И. Менделеева в химии. Применяя закон гомологических рядов, можно установить центр происхождения растений по родственным видам со сходными признаками и формами, которые развиваются, вероятно, в одной и той же географической и экологической обстановке.

Билет 4

Наследование признаков при расхождении половых хромосом(первичное и вторичное нерасхождение Х-хромосом у дрозофиллы)

Как отмечалось ранее, при скрещивании белоглазой самки дрозофилы с красноглазым самцом вF1 все дочери имеют красные глаза, а у всех сыновей, получающих свою единственную Х-хромосому от матери, глаза белые. Однако иногда в таком скрещивании проявляются единичные красноглазые самцы и белоглазые самки, так называемые исключительные мухи с частотой 0,1-0,001%. Бриджес предположил, что появление таких «исключительных особей» объясняется тем, что у их матери во время мейоза обе Х-хромосомы попали в одно яйцо, т.е. произошло нерасхождение Х-хромосом. Каждое из таких яиц может быть оплодотворено либо спермием с Х-хромосомой, либо Y-хромосомой. В результате может образоваться 4 типа зигот: 1) с тремя Х-хромосомами –ХХХ; 2) с двумя материнскими Х-хромосомами и Y-хромосомойХХY; 3) с одной отцовской Х-хромосомой; 4) без Х-хромосомы, но с Y –хромосомой.

ХХY являются нормальными плодовитыми самками. ХО-самцы, но стерильны. Это показывает, что у дрозофилы Y-хромосома не содержит генов, определяющих пол. При скрещивании ХХY самок с нормальными красноглазыми самцами (XY) Бриджес обнаружил среди потомства 4% белоглазых самок и 4% красноглазых самцов. Остальная часть потомства состояла из красноглазых самок и белоглазых самцов. Появление подобных исключительных особей автор объяснил вторичным нерасхождением Х-хромосом в мейозе, потому что самки, взятые в скрещивании (XXY), возникли вследствие первичного нерасхождения хромосом. Вторичное нерасхождение хромосом у таких самок в мейозе наблюдается в 100 раз чаще, чем первичное.

У ряда других организмов, в том числе у человека, также известно нерасхождение половых хромосом. Из 4-х типов потомков, получающихся при нерасхождении Х-хромосом у женщин, особи, не имеющие ни одной Х-хромосомы, погибают в течение эмбрионального развития. Зиготы ХХХ развиваются у женщин, у которых чаще обычного встречаются умственные дефекты и бесплодие. Из зигот ХХY развиваются неполноценные мужчины – синдром Клайнфельтера – бесплодие, умственная отсталость, евнухоидное телосложение. Потомки с одной Х-хромосомой чаще погибают в эмбриональном развитии, редкие выжившие – женщины с синдромом Шерешевского-Тернера. Они низкого роста, инфантильны, бесплодны. У человека Y-хромосомы содержат гены, определяющие развитие организма мужского пола. При отсутствии Y-хромосомы развитие идёт по женскому типу. Нерасхождение половых хромосом у человека происходит чаще, чем у дрозофилы; в среднем на каждые 600 родившихся мальчиков приходится один с синдромом Клайнфельтера.

Наши рекомендации