И его роль в осмотическом концентрировании мочи
Мочевина представляет собой неполярное низкомолекулярное соединение. В связи с этим мочевина сравнительно легко проникает через клеточные мембраны. Это вещество беспрепятственно фильтруется в клубочках. В проксимальном канальце реабсорбируется до 50% профильтровавшейся мочевины, однако в начале дистального канальца количество мочевины несколько больше, чем количество мочевины поступившей с фильтратом. Показано, что существует 2 системы внутрипочечного кругооборота мочевины, участвующая в осмотическом концентрировании мочи. Практически вся нереобсорбированная мочевина задерживается в канальце по мере того, как жидкость протекает по петле Генле, дистальному извитому канальцу, собирательной трубке мозгового вещества, поскольку все эти сегменты относительно непроницаемы для мочевины. Реабсорбция воды в этих сегментах вызывает прогрессирующее увеличение концентрации мочевины в просвете канальца. Затем во внутренних отделах мозгового вещества высокая концентрация мочевины канальца создает условия для реабсорбции мочевины из просвета собирательной трубки в интерстициальную жидкость мозгового вещества. Эта реабсорбция происходит с помощью переносчиков, осуществляющих облегченную диффузию мочевины и через апикальную, и через базолатеральную мембраны. Еще около 10% фильтруемой мочевины реабсорбируется именно таким образом; т.е. на протяжении всего канальца реабсорбируется 60% профильтровавшейся мочевины. Концентрационный градиент для реабсорбции мочевины создается посредством реабсорбции воды, поэтому если реабсорбция воды снижается, то уменьшается и концентрационный градиент. Переносчик мочевины при облегченной диффузии в собирательных трубках внутренних отделов мозгового слоя стимулируется антидиуретическим гормоном, который также является одним из основных стимуляторов реабсорбции воды в собирательных трубках. То есть при антидиурезе АДГ увеличивает проницаемость собирательных трубок мозгового вещества почки не только для воды, но и для мочевины. Когда проницаемость канальцевой стенки для мочевины увеличивается, она диффундирует в мозговое вещество почки. Мочевина проникает в просвет прямого сосуда и тонкого отдела петли нефрона. Поднимаясь по направлению к корковому веществу почки по прямому сосуду, мочевина непрерывно участвует в противоточном обмене, диффундирует в нисходящий отдел прямого сосуда и нисходящую часть петли нефрона. Вследствие этого происходит постоянное поступление мочевины во внутреннее мозговое вещество, а также ионов Cl- и Na+, реабсорбируемых клетками толстого восходящего отдела петли Генле и собирательных трубок. Эти вещества удерживаются в мозговом веществе благодаря деятельности противоточной системы прямых сосудов и петель Генле, что в конечном счете обеспечивает повышение осмотической концентрации во внутреннем мозговом веществе почки. Вслед за увеличением осмолярности межуточной ткани, окружающей собирательные трубки, возрастает и реабсорбция воды из них, повышается эффективность осморегулирующей функции почки. Увеличение проницаемости канальцевой стенки для мочевины в присутствии АДГ позволяет понять, почему при снижении мочеотделения уменьшается очищение от мочевины.
II. МЕТОДЫ ИЗУЧЕНИЯ ФУНКЦИЙ ПОЧЕК
- Фистульный
- Раздельное выведение через кожу живота отверстий мочеточников (Л.А. Орбели)
- Микропункция и микроперфузия отдельных почечных анальцев(А.Н.Ричардс).
- Ультразвуковое исследование.
- Сопоставление крови почечных артерий и вен.
- Электронная микроскопия.
- Биохимия.
- Цитохимия.
- Электрофизиология.
ПОЧЕЧНАЯ ЭКСКРЕЦИЯ И ПОНЯТИЕ О КЛИРЕНСЕ
Экскреторная (выделительная) функция почек заключается в выведении из организма чужеродных веществ и вредных конечных продуктов обмена, прежде всего азотистого, а также веществ, необходимых для нормальной деятельности организма, но образующихся в избыточном количестве.
При систематическом изучении выделения почками различных веществ во многих случаях можно убедиться в том, что скорость экскреции того или иного вещества (т.е.количество вещества, выделяемое в единицу времени) изменяется пропорционально его концентрации в плазме крови. В то же время скорости экскреции разных веществ существенно различаются, причем различия эти сохраняются даже в том случае, если рассчитать скорость экскреции для одинаковых значений концентрации веществ в плазме и скорости диуреза. Такие различия обусловлены тем, что экскреция разных веществ осуществляется почками разными способами. Так, если какое-то вещество фильтруется в клубочках и секретируется в канальцах, то скорость его экскреции, очевидно, будет выше, чем у вещества, подвергающегося после фильтрации канальцевой реабсорбции. Более того, даже если различные соединения выводятся одинаковым способом, скорость их экскреции может быть различна, если механизмы их переноса в канальцах действуют неодинаково интенсивно (например, в случае простой и облегченной диффузии). Для того чтобы объяснить различия в скорости выведения почками тех или иных веществ, необходимо количественно оценить интенсивность их фильтрации в клубочках и переноса в канальцах. Такая оценка стала возможной после введения понятия клиренса и разработки фильтрационно-реабсорбционно-секреторной гипотезы.
КЛИРЕНС
Почечный клиренс какого-либо вещества В равен отношению скорости выделения этого вещества с мочой к его концентрации в плазме крови:
Мв х V
Св = ---------- (мл/мин), (1)
Пв
где Св - клиренс , Мв и Пв - содержание в моче (М) и плазме (П) крови соответственно, V - объем мочи, образующейся за 1 мин.
Путем простого преобразования уравнения (1)
получаем Св х Пв = Мв х V (количество вещества/время) (2)
Отсюда видно, что формула для расчета клиренса выведена на основании уравнивания количества вещества, удаляемого из плазмы крови за единицу времени (Св . Пв) , и количества вещества, выделяемого за это же время мочой (Мв х V). Иными словами, почечный клиренс отражает скорость очищения плазмы от того или иного вещества. Этот показатель измеряется в мл/мин, и поэтому его можно рассматривать как "объемную скорость очищения" плазмы от определенного вещества.
Таким образом, клиренс какого-либо вещества количественно равен объему плазмы, полностью очищающему от этого вещества почками за 1 мин.
Такое определение довольно удобно для описания уравнения (1), однако оно точно отражает фактическое положение вещей лишь в двух случаях. Дело в том, что обычно не происходит полного очищения какой-либо части почечного кровотока; напротив, происходит частичное очищение всей проходящей через почки крови. В то же время существуют два вещества, от которых определенный объем плазмы действительно полностью очищается. Эти два исключения имеют особое значение для гипотезы мочеобразования и служат основой для общей оценки функции почек.
1.Клиренс инулина соответствует скорости клубочковой фильтрации, т.е. части общего почечного плазмотока, фильтруемой в мочевыводящие канальцы.
2. Клиренс парааминогиппуровой кислоты (ПАГ) почти достигает максимально возможного значения, т.е. практически равен величине общего почечного плазмотока.