Методы психофизиологии (3, 10, 14)
Центральное место в ряду методов психофизиологического исследования занимают различные способы регистрации электрической активности центральной нервной системы (головного мозга).
ЭЭГ - метод регистрации и анализа ЭЭГ, т.е. суммарной биоэлектрической активности, отводимой как со скальпа, так и из глубоких структур мозга. В 1929 г. австрийский психиатр Х. Бергер обнаружил, что с поверхности черепа можно регистрировать "мозговые волны". Электрические характеристики этих сигналов зависят от состояния испытуемого. Особенность ЭЭГ — спонтанный, автономный характер. Регулярная электрическая активность мозга может быть зафиксирована уже у плода (т.е.до рождения организма). Даже при глубокой коме и наркозе наблюдается особая характерная картина мозговых волн. Сегодня ЭЭГ является наиболее перспективным, но пока еще наименее расшифрованным источником данных. В стационарный комплекс для регистрации ЭЭГ и ряда других физиологических показателей входит звукоизолирующая экранированная камера, оборудованное место для испытуемого, многоканальные усилители, регистрирующая аппаратура. Важное значение при регистрации ЭЭГ имеет расположение электродов, при этом электрическая активность одновременно регистрируемая с различных точек головы может сильно различаться. При записи ЭЭГ используют два основных метода: биполярный и монополярный. В первом случае оба электрода помещаются в электрически активные точки скальпа, во втором один из электродов располагается в точке, которая условно считается электрически нейтральной (мочка уха, переносица). При биполярной записи регистрируется ЭЭГ, представляющая результат взаимодействия двух электрически активных точек (например, лобного и затылочного отведений), при монополярной (позволяет изучать изолированный вклад той или иной зоны мозга в изучаемый процесс) записи — активность какого-то одного отведения относительно электрически нейтральной точки (например, лобного или затылочного отведения относительно мочки уха). Выбор того или иного варианта записи зависит от целей исследования. Международная федерация обществ электроэнцефалографии приняла так называемую систему "10-20", позволяющую точно указывать расположение электродов. В соответствии с этой системой у каждого испытуемого точно измеряют расстояние между серединой переносицы (назионом) и твердым костным бугорком на затылке (инионом), а также между левой и правой ушными ямками. Возможные точки расположения электродов разделены интервалами, составляющими 10% или 20% этих расстояний на черепе. При этом для удобства регистрации весь череп разбит на области: F, O, P, T, C. 2 подхода к анализу ЭЭГ: визуальный (клинический) и статистический. Визуальной (клинический) анализ ЭЭГ используется, как правило, в диагностических целях. Статистические методы исследования электроэнцефалограммы исходят из того, что фоновая ЭЭГ стационарна и стабильна. Дальнейшая обработка в подавляющем большинстве случаев опирается на преобразование Фурье, смысл которого состоит в том, что волна любой сложной формы математически идентична сумме синусоидальных волн разной амплитуды и частоты. Преобразование Фурье позволяет преобразовать волновой паттерн фоновой ЭЭГ в частотный и установить распределение мощности по каждой частотной составляющей. В электрических процессах находит отражение синаптическая активность нейронов. Речь идет о потенциалах, которые возникают в постсинаптической мембране нейрона, принимающего импульс. Тк тормозные постсинаптические потенциалы коры могут достигать 70 мс и более. Эти потенциалы могут суммироваться.
МЭГ. Магнитоэнцефалография — регистрация параметров магнитного поля, обусловленных биоэлектрической активностью головного мозга. Запись этих параметров осуществляется с помощью сверхпроводящих квантовых интерференционных датчиков и специальной камеры, изолирующей магнитные поля мозга от более сильных внешних полей. Метод обладает рядом преимуществ перед регистрацией традиционной ЭЭГ. В частности, радиальные составляющие магнитных полей, регистрируемые со скальпа, не претерпевают таких сильных искажений, как ЭЭГ. Это позволяет более точно рассчитывать положение генераторов ЭЭГ-активности, регистрируемой со скальпа.
Вызванные потенциалы (ВП) — биоэлектрические колебания, возникающие в нервных структурах в ответ на внешнее раздражение и находящиеся в строго определенной временной связи с началом его действия. У человека ВП обычно включены в ЭЭГ, но на фоне спонтанной биоэлектрической активности трудно различимы. Регистрация ВП осуществляется специальными техническими устройствами, которые позволяют выделять полезный сигнал из шума путем последовательного его накопления, или суммации. При этом суммируется некоторое число отрезков ЭЭГ, приуроченных к началу действия раздражителя.
Первоначально его применение в основном было связано с изучением сенсорных функций человека в норме и при разных видах аномалий. Позволяют отмечать в записи ЭЭГ изменения потенциала, которые достаточно строго связаны во времени с любым фиксированным событием. В связи с этим появилось новое обозначение этого круга физиологических явлений — событийно-связанные потенциалы (ССП). Количественные методы оценки ВП и ССП предусматривают, в первую очередь, оценку амплитуд и латентностей. Локализация источников генерации ВП позволяет установить роль отдельных корковых и подкорковых образований в происхождении тех или иных компонентов ВП. Наиболее признанным здесь является деление ВП на экзогенные и эндогенные компоненты. Первые отражают активность специфических проводящих путей и зон, вторые — неспецифических ассоциативных проводящих систем мозга. Длительность тех и других оценивается по-разному для разных модальностей. ВП как инструмент, позволяющий изучать физиологические механизмы поведения и познавательной деятельности человека и животных. Применение ВП в психофизиологии связано с изучением физиологических механизмов и коррелятов познавательной деятельности человека. Это направление определяется как когнитивная психофизиология. ВП в нем используются в качестве полноценной единицы психофизиологического анализа.
Топографическое картирование электрической активности мозга (ТКЭАМ) область электрофизиологии, оперирующая с множеством количественных методов анализа электроэнцефалограммы и вызванных потенциалов. Оно позволяет очень тонко и дифференцированно анализировать изменения функциональных состояний мозга на локальном уровне в соответствии с видами выполняемой испытуемым психической деятельности. Однако метод картирования мозга является не более чем очень удобной формой представления на экране дисплея статистического анализа ЭЭГ и ВП. Компьютерная томография (КТ) — новейший метод, дающий точные и детальные изображения малейших изменений плотности мозгового вещества. Можно получить множество изображений одного и того же органа и таким образом построить внутренний поперечный срез " этой части тела, в отличие от рентгена. Томографическое изображение — это результат точных измерений и вычислений показателей ослабления рентгеновского излучения, относящихся только к конкретному органу. Метод позволяет различать ткани, незначительно отличающиеся между собой по поглощающей способности. Измеренные излучение и степень его ослабления получают цифровое выражение. По совокупности измерений каждого слоя проводится компьютерный синтез томограммы. Завершающий этап — построение изображения исследуемого слоя на экране. Помимо решения клинических задач (например, определения местоположения опухоли) с помощью КТ можно получить представление о распределении регионального мозгового кровотока. Благодаря этому КТ может быть использована для изучения обмена веществ и кровоснабжения мозга.
Компьютерная томография стала родоночальницей ряда других еще более совершенных методов исследования: томографии с использованием эффекта ядерного магнитного резонанса (ЯМР-томография), позитронной эмиссионной томографии (ПЭТ), функционального магнитного резонанса (ФМР). Эти методы относятся к наиболее перспективным способам неинвазивного совмещенного изучения структуры, метаболизма и кровотока мозга. В ходе жизнедеятельности нейроны потребляют различные химические вещества, которые можно пометить радиоактивными изотопами (например, глюкозу). При активизации нервных клеток кровоснабжение соответствующего участка мозга возрастает, в результате в нем скапливаются меченые вещества и возрастает радиоактивность. Измеряя уровень радиоактивности различных участков мозга, можно сделать выводы об изменениях активности мозга при разных видах психической деятельности. При ЯМР-томографии получение изображения основано на определении в мозговом веществе распределения плотности ядер водорода (протонов) и на регистрации некоторых их характеристик при помощи мощных электромагнитов, расположенных вокруг тела человека. С помощью этого метода можно получить четкие изображения "срезов" мозга в различных плоскостях. ПЭТсочетает возможности КТ и радиоизотопной диагностики. В ней используются ультракороткоживущие позитронизлучающие изотопы ("красители"), входящие в состав естественных метаболитов мозга, которые вводятся в организм человека через дыхательные пути или внутривенно. Активным участкам мозга нужен больший приток крови, поэтому в рабочих зонах мозга скапливается больше радиоактивного "красителя". На сочетании метода ЯМР с измерением мозгового метаболизма при помощи позитронной эмиссии был основан метод функционального магнитного резонанса (ФМР). Термоэнцефалоскопия.По частоте в ЭЭГ различают следующие типы ритмических составляющих: дельта-ритм (0,5-4 Гц); тэта-ритм (5-7 Гц); альфа-ритм (8-13 Гц) — основной ритм ЭЭГ, преобладающий в состоянии покоя; мю-ритм — по частотно-амплитудным характеристикам сходен с альфа-ритмом, но преобладает в передних отделах коры больших полушарий; бета-ритм (15-35 Гц); гамма-ритм (выше 35 Гц). Следует подчеркнуть, что подобное разбиение на группы более или менее произвольно, оно не соответствует никаким физиологическим категориям. Основные ритмы и параметры энцефалограммы: 1. Альфа-волна - одиночное двухфазовое колебание разности потенциалов длительностью 75-125 мс., по форме приближается к синусоидальной. 2. Альфа-ритм - ритмическое колебание потенциалов с частотой 8-13 Гц, выражен чаще в задних отделах мозга при закрытых глазах в состоянии относительного покоя, средняя амплитуда 30-40 мкВ, обычно модулирован в веретена. 3. Бета-волна - одиночное двухфазовое колебание потенциалов длительностью менее 75 мс. и амплитудой 10-15 мкВ (не более 30). 4. Бета-ритм - ритмическое колебание потенциалов с частотой 14-35 Гц. Лучше выражен в лобно-центральных областях мозга. 5. Дельта-волна - одиночное двухфазовое колебание разности потенциалов длительностью более 250 мс. 6. Дельта-ритм - ритмическое колебание потенциалов с частотой 1-3 Гц и амплитудой от 10 до 250 мкВ и более. 7. Тета-волна - одиночное, чаще двухфазовое колебание разности потенциалов длительностью 130-250 мс. 8. Тета-ритм - ритмическое колебание потенциалов с частотой 4-7 Гц, чаще двухсторонние синхронные, с амплитудой 100-200 мкВ, иногда с веретенообразной модуляцией, особенно в лобной области мозга. Важная характеристика электрических потенциалов мозга — амплитуда, т.е. величина колебаний. Амплитуда и частота колебаний связаны друг с другом. Амплитуда высокочастотных бета-волн у одного и того человека может быть почти в 10 раз ниже амплитуды более медленных альфа-волн. Ритмический характер биоэлектрической активности коры, и в частности альфа-ритма, обусловлен в основном влиянием подкорковых структур, в первую очередь таламуса (промежуточный мозг). Именно в таламусе находятся главные, но не единственные пейсмекеры или водители ритма. Одностороннее удаление таламуса или его хирургическая изоляция от неокортекса приводит к полному исчезновению альфа-ритма в зонах коры прооперированного полушария. При этом в ритмической активности самого таламуса ничто не меняется. Нейроны неспецифического таламуса обладают свойством авторитмичности. Большую роль в динамике электрической активности таламуса и коры играет ретикулярная формация ствола мозга. Она может оказывать синхронизирующее влияние, т.е. способствующее генерации устойчивого ритмического паттерна, и дезинхронизирующее, нарушающее согласованную ритмическую активность. Альфа-ритм — доминирующий ритм ЭЭГ покоя у человека. Считали, что этот ритм выполняет функцию временного сканирования ("считывания") информации и тесно связан с механизмами восприятия и памяти. Предполагается, что альфа-ритм отражает реверберацию возбуждений, кодирующих внутримозговую информацию и создающих оптимальный фон для процесса приема и переработки афферентных сигналов. Его роль состоит в своеобразной функциональной стабилизации состояний мозга и обеспечении готовности реагирования. Предполагается также, что альфа-ритм связан с действием селектирующих механизмов мозга, выполняющих функцию резонансного фильтра, и таким образом регулирующих поток сенсорных импульсов. Дельта-ритм у здорового взрослого человека в покое практически отсутствует, но он доминирует в ЭЭГ на четвертой стадии сна, которая получила свое название по этому ритму (медленноволновой сон или дельта-сон). Напротив, тэта-ритм тесно связан с эмоциональным и умственным напряжением. Его иногда так и называют стресс-ритм или ритм напряжения. У человека одним из ЭЭГ симптомов эмоционального возбуждения служит усиление тэта-ритма с частотой колебаний 4-7 Гц, сопровождающее переживание как положительных, так и отрицательных эмоций. При выполнении мыслительных заданий может усиливаться и дельта-, и тета-активность. Причем усиление последней составляющей положительно соотносится с успешностью решения задач. По своему происхождению тэта-ритм связан с кортико-лимбическим взаимодействием. Предполагается, что усиление тэта-ритма при эмоциях отражает активацию коры больших полушарий со стороны лимбической системы.
Переход от состояния покоя к напряжению всегда сопровождается реакцией десинхронизации, главным компонентом которой служит высокочастотная бета-активность. Умственная деятельность у взрослых сопровождается повышением мощности бета-ритма, причем значимое усиление высокочастотной активности наблюдается при умственной деятельности, включающей элементы новизны, в то время как стереотипные, повторяющиеся умственные операции сопровождаются ее снижением. Установлено также, что успешность выполнения вербальных заданий и тестов на зрительно-пространственные отношения оказывается положительно связанной с высокой активностью бета-диапазона ЭЭГ левого полушария. По некоторым предположениям, эта активность связана с отражением деятельности механизмов сканирования структуры стимула, осуществляемой нейронными сетями, продуцирующими высокочастотную активность ЭЭГ.