Методы психофизиологии

В этом разделе будут представлены систематика, способы регистрации и значение физиологических показателей, связанных с психической деятельностью человека. Психофизиология — экспериментальная дисциплина, поэтому интерпретационные возможности психофизиологических исследований в значительной степени определяются совершенством и разнообразием применяемых методов. Правильный выбор методики, адекватное использование ее показателей и соответствующее разрешающим возможностям методики истолкование полученных результатов являются условиями, необходимыми для проведения успешного психофизиологического исследования. 2.1. Методы изучения работы головного мозга
  • 2.1.1. Электроэнцефалография
  • 2.1.2. Вызванные потенциалы головного мозга
  • 2.1.3. Топографическое картирование электрической активности мозга (ТКЭАМ)
  • 2.1.4. Компьютерная томография (КТ)
  • 2.1.5. Нейрональная активность
  • 2.1.6. Методы воздействия на мозг
Центральное место в ряду методов психофизиологического исследования занимают различные способы регистрации электрической активности центральной нервной системы, и в первую очередь головного мозга. 2.1.1. Электроэнцефалография Методы психофизиологии - student2.ru Электроэнцефалография — метод регистрации и анализа электроэнцефалограммы (ЭЭГ), т.е. суммарной биоэлектрической активности, отводимой как со скальпа, так и из глубоких структур мозга. Последнее у человека возможно лишь в клинических условиях. В 1929 г. австрийский психиатр Х. Бергер обнаружил, что с поверхности черепа можно регистрировать "мозговые волны". Он установил, что электрические характеристики этих сигналов зависят от состояния испытуемого. Наиболее заметными были синхронные волны относительно большой амплитуды с характерной частотой около 10 циклов в секунду. Бергер назвал их альфа-волнами и противопоставил их высокочастотным "бета-волнам", которые проявляются тогда, когда человек переходит в более активное состояние. Открытие Бергера привело к созданию электроэнцефалографического метода изучения мозга, состоящего в регистрации, анализе и интерпретации биотоков мозга животных и человека. Одна из самых поразительных особенностей ЭЭГ — ее спонтанный, автономный характер. Регулярная электрическая активность мозга может быть зафиксирована уже у плода (т.е. до рождения организма) и прекращается только с наступлением смерти. Даже при глубокой коме и наркозе наблюдается особая характерная картина мозговых волн. Сегодня ЭЭГ является наиболее перспективным, но пока еще наименее расшифрованным источником данных для психофизиолога. Условия регистрации и способы анализа ЭЭГ. В стационарный комплекс для регистрации ЭЭГ и ряда других физиологических показателей входит звукоизолирующая экранированная камера, оборудованное место для испытуемого, моногоканальные усилители, регистрирующая аппаратура (чернилопишущий энцефалограф, многоканальный магнитофон). Обычно используется от 8 до 16 каналов регистрации ЭЭГ от различных участков поверхности черепа одновременно. Анализ ЭЭГ осуществляется как визуально, так и с помощью ЭВМ. В последнем случае необходимо специальное программное обеспечение.
  • По частоте в ЭЭГ различают следующие типы ритмических составляющих:
    • дельта-ритм (0,5-4 Гц);
    • тэта-ритм (5-7 Гц);
    • альфа-ритм (8-13 Гц) — основной ритм ЭЭГ, преобладающий в состоянии покоя;
    • мю-ритм — по частотно-амплитудным характеристикам сходен с альфа-ритмом, но преобладает в передних отделах коры больших полушарий;
    • бета-ритм (15-35 Гц);
    • гамма-ритм (выше 35 Гц).
Следует подчеркнуть, что подобное разбиение на группы более или менее произвольно, оно не соответствует никаким физиологическим категориям. Зарегистрированы и более медленные частоты электрических потенциалов головного мозга вплоть до периодов порядка нескольких часов и суток. Запись по этим частотам выполняется с помощью ЭВМ.
Методы психофизиологии - student2.ru Основные ритмы и параметры энцефалограммы. 1. Альфа-волна - одиночное двухфазовое колебание разности потенциалов длительностью 75-125 мс., по форме приближается к синусоидальной. 2. Альфа-ритм - ритмическое колебание потенциалов с частотой 8-13 Гц, выражен чаще в задних отделах мозга при закрытых глазах в состоянии относительного покоя, средняя амплитуда 30-40 мкВ, обычно модулирован в веретена. 3. Бета-волна - одиночное двухфазовое колебание потенциалов длительностью менее 75 мс. и амплитудой 10-15 мкВ (не более 30). 4. Бета-ритм - ритмическое колебание потенциалов с частотой 14-35 Гц. Лучше выражен в лобно-центральных областях мозга. 5. Дельта-волна - одиночное двухфазовое колебание разности потенциалов длительностью более 250 мс. 6. Дельта-ритм - ритмическое колебание потенциалов с частотой 1-3 Гц и амплитудой от 10 до 250 мкВ и более. 7. Тета-волна - одиночное, чаще двухфазовое колебание разности потенциалов длительностью 130-250 мс. 8. Тета-ритм - ритмическое колебание потенциалов с частотой 4-7 Гц, чаще двухсторонние синхронные, с амплитудой 100-200 мкВ, иногда с веретенообразной модуляцией, особенно в лобной области мозга.

Методы психофизиологии - student2.ru Другая важная характеристика электрических потенциалов мозга — амплитуда, т.е. величина колебаний. Амплитуда и частота колебаний связаны друг с другом. Амплитуда высокочастотных бета-волн у одного и того человека может быть почти в 10 раз ниже амплитуды более медленных альфа-волн.
Важное значение при регистрации ЭЭГ имеет расположение электродов, при этом электрическая активность одновременно регистрируемая с различных точек головы может сильно различаться. При записи ЭЭГ используют два основных метода: биполярный и монополярный. В первом случае оба электрода помещаются в электрически активные точки скальпа, во втором один из электродов располагается в точке, которая условно считается электрически нейтральной (мочка уха, переносица). При биполярной записи регистрируется ЭЭГ, представляющая результат взаимодействия двух электрически активных точек (например, лобного и затылочного отведений), при монополярной записи — активность какого-то одного отведения относительно электрически нейтральной точки (например, лобного или затылочного отведения относительно мочки уха). Выбор того или иного варианта записи зависит от целей исследования. В исследовательской практике шире используется монополярный вариант регистрации, поскольку он позволяет изучать изолированный вклад той или иной зоны мозга в изучаемый процесс.
Международная федерация обществ электроэнцефалографии приняла так называемую систему "10-20", позволяющую точно указывать расположение электродов. В соответствии с этой системой у каждого испытуемого точно измеряют расстояние между серединой переносицы (назионом) и твердым костным бугорком на затылке (инионом), а также между левой и правой ушными ямками. Возможные точки расположения электродов разделены интервалами, составляющими 10% или 20% этих расстояний на черепе. При этом для удобства регистрации весь череп разбит на области, обозначенные буквами: F — лобная, О — затылочная область, Р — теменная, Т — височная, С — область центральной борозды. Нечетные номера мест отведения относятся к левому, а четные — к правому полушарию. Буквой Z — обозначается отведение от верхушки черепа. Это место называется вертексом и его используют особенно часто (см. Хрестомат. 2.2).



Методы психофизиологии - student2.ru Система 10-20 (Jasper, 1958). Расположение электродов на поверхности головы: F - лобная часть; C - центральная; P - теменная; T - височная; O - затылочная. Нечетные индексы - левая половина головы, четные индексы - правая, Z - средняя линия

Клинический и статический методы изучения ЭЭГ. С момента возникновения выделились и продолжают существовать как относительно самостоятельные два подхода к анализу ЭЭГ: визуальный (клинический) и статистический.
Визуальной (клинический) анализ ЭЭГ используется, как правило, в диагностических целях. Электрофизиолог, опираясь на определенные способы такого анализа ЭЭГ, решает следуюшие вопросы: соответствует ли ЭЭГ общепринятым стандартам нормы; если нет, то какова степень отклонения от нормы, обнаруживаются ли у пациента признаки очагового поражения мозга и какова локализация очага поражения. Клинический анализ ЭЭГ всегда строго индивидуален и носит преимущественно качественный характер. Несмотря на то, что существуют общепринятые в клинике приемы описания ЭЭГ, клиническая интерпретация ЭЭГ в большей степени зависит от опыта электрофизиолога, его умения "читать" электроэнцефалограмму, выделяя в ней скрытые и нередко очень вариативные патологические признаки.
Следует, однако, подчеркнуть, что в широкой клинической практике грубые макроочаговые нарушения или другие отчетливо выраженные формы патологии ЭЭГ встречаются редко. Чаще всего (70-80% случаев) наблюдаются диффузные изменения биоэлектрической активности мозга с симптоматикой, трудно поддающейся формальному описанию. Между тем именно эта симптоматика может представлять особый интерес для анализа того контингента испытуемых, которые входят в группу так называемой "малой" психиатрии — состояний, граничащих между "хорошей" нормой и явной патологией. Именно по этой причине сейчас предпринимаются особые усилия по формализации и даже разработки компьютерных программ для анализа клинической ЭЭГ.
Статистические методы исследования электроэнцефалограммы исходят из того, что фоновая ЭЭГ стационарна и стабильна. Дальнейшая обработка в подавляющем большинстве случаев опирается на преобразование Фурье, смысл которого состоит в том, что волна любой сложной формы математически идентична сумме синусоидальных волн разной амплитуды и частоты.
Преобразование Фурье позволяет преобразовать волновой паттерн фоновой ЭЭГ в частотный и установить распределение мощности по каждой частотной составляющей. С помощью преобразования Фурье самые сложные по форме колебания ЭЭГ можно свести к ряду синусоидальных волн с разными амплитудами и частотами. На этой основе выделяются новые показатели, расширяющие содержательную интерпретацию ритмической организации биоэлектрических процессов.
Например, специальную задачу составляет анализ вклада, или относительной мощности, разных частот, которая зависит от амплитуд синусоидальных составляющих. Она решается с помощью построения спектров мощности. Последний представляет собой совокупность всех значений мощности ритмических составляющих ЭЭГ, вычисляемых с определенным шагом дискретизации (в размере десятых долей герца). Спектры могут характеризовать абсолютную мощность каждой ритмической составляющей или относительную, т.е. выраженность мощности каждой составляющей (в процентах) по отношению к общей мощности ЭЭГ в анализируемом отрезке записи.

Методы психофизиологии - student2.ru Индивидуальный спектр ЭЭГ в состоянии покоя (по D. Lykken et al., 1974). По оси абсцисс - частота в Гц., по оси ординат - спектральные плотности в логарифмической шкале. На рисунке хорошо видно, что максимальное значение спектральной мощности приходится на частоту альфа-ритма

Методы психофизиологии - student2.ru Спектры мощности ЭЭГ можно подвергать дальнейшей обработке, например, корреляционному анализу, при этом вычисляют авто- и кросскорреляционные функции, а также когерентность, которая характеризует меру синхронности частотных диапазонов ЭЭГ в двух различных отведениях. Когерентность изменяется в диапазоне от +1 (полностью совпадающие формы волны) до 0 (абсолютно различные формы волн). Такая оценка проводится в каждой точке непрерывного частотного спектра или как средняя в пределах частотных поддиапазонов.
При помощи вычисления когерентности можно определить характер внутри- и межполушарных отношений показателей ЭЭГ в покое и при разных видах деятельности. В частности, с помощью этого метода можно установить ведущее полушарие для конкретной деятельности испытуемого, наличие устойчивой межполушарной асимметрии и др. Благодаря этому спектрально-корреляционный метод оценки спектральной мощности (плотности) ритмических составляющих ЭЭГ и их когерентности является в настоящее время одним из наиболее распространенных.

Источники генерации ЭЭГ. Парадоксально, но собственно импульсная активность нейронов не находит отражения в колебаниях электрического потенциала, регистрируемого с поверхности черепа человека. Причина в том, что импульсная активность нейронов не сопоставима с ЭЭГ по временным параметрам. Длительность импульса (потенциала действия) нейрона составляет не более 2 мс. Временные параметры ритмических составляющих ЭЭГ исчисляются десятками и сотнями милисекунд.
Принято считать, что в электрических процессах, регистрируемых с поверхности открытого мозга или скальпа, находит отражение синаптическая активность нейронов. Речь идет о потенциалах, которые возникают в постсинаптической мембране нейрона, принимающего импульс. Возбуждающие постсинаптические потенциалы имеют длительность более 30 мс, а тормозные постсинаптические потенциалы коры могут достигать 70 мс и более. Эти потенциалы (в отличие от потенциала действия нейрона, который возникает по приниципу "все или ничего") имеют градуальный характер и могут суммироваться.
Несколько упрощая картину, можно сказать, что положительные колебания потенциала на поверхности коры связаны либо с возбуждающими постсинаптическими потенциалами в ее глубинных слоях, либо с тормозными постсинаптическими потенциалами в поверхностных слоях. Отрицательные колебания потенциала на поверности коры предположительно отражают противоположное этому соотношение источников электрической активности.
Ритмический характер биоэлектрической активности коры, и в частности альфа-ритма, обусловлен в основном влиянием подкорковых структур, в первую очередь таламуса (промежуточный мозг). Именно в таламусе находятся главные, но не единственные пейсмекеры или водители ритма. Одностороннее удаление таламуса или его хирургическая изоляция от неокортекса приводит к полному исчезновению альфа-ритма в зонах коры прооперированного полушария. При этом в ритмической активности самого таламуса ничто не меняется. Нейроны неспецифического таламуса обладают свойством авторитмичности. Эти нейроны через соответствующие возбуждающие и тормозные связи способны генерировать и поддерживать ритмическую активность в коре больших полушарий. Большую роль в динамике электрической активности таламуса и коры играет ретикулярная формация ствола мозга. Она может о казывать синхронизирующее влияние, т.е. способствующее генерации устойчивого ритмического паттерна, и дезинхронизирующее, нарушающее согласованную ритмическую активность (см. Хрестомат. 2.3).

Методы психофизиологии - student2.ru
Синаптическая активность нейронов

Функциональное значение ЭЗГ и её составляющих. Существенное значение имеет вопрос о функциональном значении отдельных составляющих ЭЭГ. Наибольшее внимание исследователей здесь всегда привлекал альфа-ритм — доминирующий ритм ЭЭГ покоя у человека.
Существует немало предположений, касающихся функциональной роли альфа-ритма. Основоположник кибернетики Н. Винер и вслед за ним ряд других исследователей считали, что этот ритм выполняет функцию временного сканирования ("считывания") информации и тесно связан с механизмами восприятия и памяти. Предполагается, что альфа-ритм отражает реверберацию возбуждений, кодирующих внутримозговую информацию и создающих оптимальный фон для процесса приема и переработки афферентных сигналов. Его роль состоит в своеобразной функциональной стабилизации состояний мозга и обеспечении готовности реагирования. Предполагается также, что альфа-ритм связан с действием селектирующих механизмов мозга, выполняющих функцию резонансного фильтра, и таким образом регулирующих поток сенсорных импульсов.
В покое в ЭЭГ могут присутствовать и другие ритмические составляющие, но их значение лучше всего выясняется при изменениии функциональных состояний организма (Данилова, 1992). Так, дельта-ритм у здорового взрослого человека в покое практически отсутствует, но он доминирует в ЭЭГ на четвертой стадии сна, которая получила свое название по этому ритму (медленноволновой сон или дельта-сон). Напротив, тэта-ритм тесно связан с эмоциональным и умственным напряжением. Его иногда так и называют стресс-ритм или ритм напряжения. У человека одним из ЭЭГ симптомов эмоционального возбуждения служит усиление тэта-ритма с частотой колебаний 4-7 Гц, сопровождающее переживание как положительных, так и отрицательных эмоций. При выполнении мыслительных заданий может усиливаться и дельта-, и тета-активность. Причем усиление последней составляющей положительно соотносится с успешностью решения задач. По своему происхождению тэта-ритм связан с кортико-лимбическим взаимодействием. Предполагается, что усиление тэта-ритма при эмоциях отражает активацию коры больших полушарий со стороны лимбической системы.
Переход от состояния покоя к напряжению всегда сопровождается реакцией десинхронизации, главным компонентом которой служит высокочастотная бета-активность. Умственная деятельность у взрослых сопровождается повышением мощности бета-ритма, причем значимое усиление высокочастотной активности наблюдается при умственной деятельности, включающей элементы новизны, в то время как стереотипные, повторяющиеся умственные операции сопровождаются ее снижением. Установлено также, что успешность выполнения вербальных заданий и тестов на зрительно-пространственные отношения оказывается положительно связанной с высокой активностью бета-диапазона ЭЭГ левого полушария. По некоторым предположениям, эта активность связана с отражением деятельности механизмов сканирования структуры стимула, осуществляемой нейронными сетями, продуцирующими высокочастотную активность ЭЭГ (см. Хрестомат. 2.1; Хрестомат. 2.5).

Магнитоэнцефалография — регистрация параметров магнитного поля, обусловленных биоэлектрической активностью головного мозга. Запись этих параметров осуществляется с помощью сверхпроводящих квантовых интерференционных датчиков и специальной камеры, изолирующей магнитные поля мозга от более сильных внешних полей. Метод обладает рядом преимуществ перед регистрацией традиционной электроэнцефалограммы. В частности, радиальные составляющие магнитных полей, регистрируемые со скальпа, не претерпевают таких сильных искажений, как ЭЭГ. Это позволяет более точно рассчитывать положение генераторов ЭЭГ-активности, регистрируемой со скальпа.

Наши рекомендации