Изодинамия питательных веществ

Необходимые количества энергии могут быть получены организмом за счет окисле­ния и белков, и жиров, и углеводов. Существует правило изодинамии, согласно которому отдельные питательные вещества могут заменять друг друга в соответствии с их калори­ческими коэффициентами. 1 г жира, дающий организму 39,1 кДж (9,3 ккал), можно заменить 2,3 г углевода или белка, а. 1 г белка или 1 г углевода, которые дают организму 17,2 кДж, (4,1 ккал), эквиваленты 0,44 г жира.

Правило изодинамии, однако, учитывает только энергетические нужды организма, между тем как вещества пищи (белки, липиды) имеют и пластическое значение, участвуя в образовании клеточных структур. Поэтому при составлении норм питания нельзя руководствоваться только этим правилом и заботиться только о калорийности пищи.

Необходимо, чтобы организм получал достаточное количество белков, жиров, угле­водов, минеральных солей и различных витаминов.

Нормы питания человека

При составлении пищевых рационов особенно важное теоретическое и практическое значение имеет вопрос о нормах белков в питании.

Исследования по изучению необходимого для человека количества белка в пище начаты в 60-х годах прошлого столетия. Они показали, что потребность взрослого чело­века при физическом труде средней тяжести равна 118 г белка в сутки.

Ряд исследователей на Западе, и особенно в США, многократно занимались вопро­сом, касающимся возможности снижения количества вводимого белка, не нарушая состояния азотистого равновесия в сторону отрицательного азотистого баланса, т. е. не создавая белкового голодания. Эти исследователи пытались определить белковый минимум, т. е. минимальное количество белка, при котором еще возможно сохранение азотистого равновесия. Таким минимумом стали считать потребление 25—35 г белка в сутки (хотя при этом отмечался хронический отрицательный баланс азота). Не удается достигнуть азотистого равновесия у всех обследуемых даже при суточном потреблении 50 г белка. Эти факты свидетельствуют о недопустимости резкого снижения нормы белка в питании, так как длительное ограничение поступления белка может сказаться небла­гоприятно спустя сравнительно большие промежутки времени. Установлено, что при малых количествах поступающего белка понижается сопротивляемость организма к ин­фекциям. Количество белка в пище должно быть выше минимальной потребности орга­низма в азотистых соединениях, поскольку нужен некоторый резерв, который может быть использован в случае усиления физиологической деятельности.

При составлении пищевого рациона необходимо ориентироваться не на белковый минимум, а на белковый оптимум, т. е. на то количество белка в пище, которое полностью обеспечивает потребности организма, хорошее самочувствие, высокую работоспособ­ность, достаточную сопротивляемость вредным воздействиям, а для детей еще и потреб­ности роста. Ежесуточный прием с пищей взрослым человеком 80—100 г белка полностью удовлетворяет запросы организма в нормальных физиологических условиях при легкой работе.

При работе средней тяжести требуется около 110 г белка,' а при тяжелом физическом труде — около 130 г. Не менее 30% этого количества белка должно быть животного происхождения, т. е. белки должны быть сбалансированы по аминокислотному составу.

Пищевой рацион должен включать не менее 70 г жиров, так как в их состав входят жирорастворимые витамины и липоиды, необходимые для построения клеток. При затра­те 12 560 кДж (3 000 ккал) в сутки рекомендуется прием с пищей около 100 г жира. Из этого количества жира 30—60% должны приходиться на жиры животного происхождения.

Пища должна содержать также углеводы, минеральные соли и достаточное коли­чество витаминов. Суточное количество углеводов в пище человека должно составлять 400—450 г. Потребность в основных питательных веществах детей и подростков представлена в табл. 23.

Таблица

Потребность в белках, жирах и углеводах детей и подростков, г/сут
Возраст Белкн Жиры Углеводы
всего в том числе животные всего в том числе растительные
6 мес — 1 год 20-25   ИЗ
1 — 11 /г года
Г/*—2 »
3-4 »
5—6 лет И
7—!0 »
11 — 14 »
14— 17 »          
(юноши)
14—17 »          
(девушки)

Из табл. 23 следует, что потребность детского организма в питательных веществах относительно выше, чем у взрослых.

Глава 14

терморегуляция

ТЕМПЕРАТУРА ТЕЛА И ИЗОТЕРМИЯ

Температура тела человека и высших животных поддерживается на относительно постоянном уровне, несмотря на колебания температуры окружающей среды. Это посто­янство температуры тела носит название изотермии.

Изотермия свойственна только так называемым гомойотермным, или теплокровным, животным. Изотермия отсутствует у пойкилотермных, или холоднокровных, животных, температура тела кото­рых переменна и мало отличается от температуры окружающей среды.

Изотермия в процессе онтогенеза развивается постепенно. У новорожденного ребенка способ­ность поддерживать постоянство температуры тела далеко не совершенна. Вследствие этого может наступить охлаждение (гипотермия) или перегревание (гипертермия) организма при таких темпе­ратурах окружающей среды, которые не оказывают влияния на взрослого человека. Равным образом даже небольшая мышечная работа, например,, связанная с длительным криком ребенка, может повысить температуру тела. Организм недоношенных детей еще менее способен поддерживать постоянство температуры тела, которая у них в значительной мере зависит от температуры среды обитания.

Температура органов и тканей, как и всего ррганизма в целом, зависит от интенсив­ности образования тепла и от величины теплопотерь.

Теплообразование происходит вследствие непрерывно совершающихся экзотерми­ческих реакций. Эти реакции протекают во всех органах и тканях, но неодинаково интен­сивно. В тканях и органах, производящих активную работу — в мышечной ткани, печени, почках, выделяется большее количество тепла, чем в менее активных соединительной ткани, костях, хрящах.

Потеря тепла органами и тканями зависит в большой степени от их месторасположе­ния: поверхностно расположенные органы, например кожа, скелетные мышцы, отдают

больше тепла и охлаждаются сильнее, чем внутренние органы, более защищенные от ох­лаждения.

Отсюда ясно, что температура разных органов различна. Так, печень, расположен­ная глубоко внутри тела и дающая большую теплопродукцию, имеет у человека более высокую и постоянную температуру (37,8—38 °С) по сравнению с кожей, температура которой значительно ниже (на покрытых одеждой участках 29,5—33,9 °С) и в большей мере зависит от окружающей среды. Поэтому справедливо говорить о том, что изотермия присуща главным образом внутренним органам и головному мозгу. Поверхность же тела и конечности, температура которых может несколько изменяться в зависимости от тем­пературы окружающей среды, являются в некоторой мере пойкилотермными. При этом различные участки кожной поверхности имеют неодинаковую температуру. Обычно отно­сительно выше температура кожи туловища и головы (33—34 °С). Температура конеч­ностей ниже, причем она наиболее низкая в дистальных отделах.

Из сказанного следует, что понятие «постоянная температура тела» является условным. Лучше всего среднюю температуру организма как целого характеризует температура крови в наиболее крупных сосудах, так как циркулирующая в них кровь нагревается в активных тканях (тем самым охлаждая их) и охлаждается в коже (одно­временно согревая ее).

О температуре тела человека судят обычно на основании ее измерения в подмышечной впадине. Здесь температура у здорового человека равна 36,5—36,9 "С. В клинике часто (особенно у груаны.ч детей) измеряют температуру в прямой кишке, где она выше, чем в подмышечной впадине, и равна у здорового человека в среднем 37,2—37,5 °С.

Температура тела не остается постоянной, а колеблется в течение суток в пределах 0,5—0,7 сС. Покой и сон понижают.температуру, мышечная деятельность повышает ее. Максимальная темпера­тура тела наблюдается в 4—6 ч вечера, минимальная — в 3—4 ч утра. У рабочих, длительно работающих в ночных сменйх, колебания температуры могут быть обратными указанным выше.

Постоянство температуры тела у человека может сохраняться лишь при условии равенства теплообразования и теплопотери всего организма. Это достигается с помощью физиологических механизмов терморегуляции. Терморегуляция проявляется в форме вззимосочетания процессов теплообразования и теплоотдачи, регулируемых нервно- эндокринным путем. Терморегуляцию принято разделять на химическую и физическую.

Химическая терморегуляция осуществляется путем изменения уровня теплообразо­вания, т. е. усиления или ослабления интенсивности обмена веществ в клетках организма. Физическая терморегуляция осуществляется путем изменения интенсивности Отдачи тепла.

ХИМИЧЕСКАЯ ТЕРМОРЕГУЛЯЦИЯ

Химическая терморегуляция имеет важное значение для поддержания постоянства температуры тела, как в нормальных условиях, так и при изменении температуры окружа­ющей среды.

У человека усиление теплообразования вследствие увеличения интенсивности обме­на веществ отмечается, в частности, тогда, когда температура окружающей среды становится ниже оптимальной температуры, или зоны комфорта. При обычной легкой одежде эта зона находится в пределах 18—20 °С, а для обнаженного человека 28 °С.

Оптимальная температура во время пребывания в воде выше, чем на воздухе. Это обусловлено тем, что вода, обладающая высокой теплоемкостью и теплопроводностью, охлаждает тело в 14 раз сильнее, чем воздух. Поэтому в прохладной ванне обмен веществ повышается значительно больше, чем во время пребывания на воздухе при той же температуре.

Наиболее интенсивное теплообразование в организме происходит в мышцах. Даже если человек лежит неподвижно, но с напряженной мускулатурой, окислительные продес- сы, а вместе с тем и теплообразование повышаются на 10%. Небольшая двигательная активность ведет к увеличению теплообразования на 50—80%, а тяжелая мышечная работа — на 400—500%.

В условиях холода теплообразование в мышцах увеличивается, даже если человек находится в неподвижном состоянии. Это обусловлено тем, что охлаждение поверхности тела, действуя на рецепторы, воспринимающие холодовое раздражение, рефлекторно возбуждает беспорядочные непроизвольные сокращения мышц, проявляющиеся в виде дрожи (озноб). При этом обменные процессы организма значительно усиливаются, уве­личивается потребление кислорода и углеводов мышечной тканью, что и влечет за собой повышение теплообразования. Даже произвольная имитация дрожи увеличивает теплообразование на 200%. Если в организм введены миорелаксанты — вещества, нару­шающие передачу нервных импульсов с нерва на мышцу и тем самым устраняющие рефлекторную мышечную дрожь, при понижении температуры окружающей среды гораздо быстрее наступает понижение температуры тела.

В химической терморегуляции, кроме мышц, значительную роль играют печень и почки. Температура крови печеночной вены выше температуры крови печеночной арте­рии, что указывает на интенсивное теплообразование в этом органе. При охлаждении тела теплопродукция в печени возрастает.

Освобождение энергии в организме совершается за счет окислительного распада белков, жиров и углеводов. Поэтому все механизмы, которые регулируют окислительные процессы, регулируют и теплообразование.

ФИЗИЧЕСКАЯ ТЕРМОРЕГУЛЯЦИЯ

Физическая терморегуляция осуществляется путем изменений отдачи тепла орга­низмом. Особо важное значение она приобретает в поддержании постоянства температу­ры тела во время пребывания организма в условиях повышенной температуры окружаю­щей среды.

Теплоотдача осуществляется путем теплоизлучения (радиационная теплоотдача), конвекции, т. е. движения и перемешивания нагреваемого телом воздуха, теплопроведе- ния, т. е. отдачи тепла веществам, непосредственно соприкасающимся с поверхностью тела, и испарения воды с поверхности кожи и легких.

У человека в обычных условиях потеря тепла путем теплопроведения имеет неболь­шое значение, так как воздух и одежда являются плохими проводниками тепла. Радиа­ция, испарение и конвекция протекают с различной интенсивностью в зависимости от температуры окружающей среды. У человека в состоянии покоя при температуре воздуха около 20 °С и суммарной теплоотдаче, равной 419 кДж (100 ккал) в час, радиация составляет 66%, испарение воды —19%, конвекция —15% общей потери тепла организ­мом. При повышении температуры окружающей среды до 35 °С теплоотдача посредством радиации и конвекции становится невозможной и температура тела поддерживается на постоянном уровне исключительно посредством испарения воды с поверхности кожи и альвеол легких.

Для того чтобы было ясно значение испарения в теплоотдаче, напомним, что для испарения 1 мл воды необходимо 2,4 кДж (0,58 ккал). Следовательно, если в условиях основного обмена телом человека отдается посредством испарения около 1675—2093 кДж (400—500 ккал), то с поверх­ности тела должно испаряться примерно 700—850 мл воды. Из этого количества 300—350 мл испаряются в легких и 400—500 мл — с поверхности кожи.

Характер отдачи тепла телом изменяется в зависимости от интенсивности обмена веществ. При увеличении теплообразования в результате мышечной работы возрастает значение теплоотдачи, осуществляемой посредством испарения воды. Так, после тяжелого спортивного соревнования, когда суммарная теплоотдача достигала почти 2512 кДж (600 ккал) в час, было найдено, что 75% тепла было отдано путем испарения, 12% — путем радиации и 13 % —посредством конвекции.

Одежда уменьшает теплоотдачу. Потере тепла препятствует тот слой неподвижного воздуха, который находится между одеждой и кожей, так как воздух — плохой проводник тепла. Теплоизолирующие свойства одежды тем выше, чем более мелкоячеиста ее струк­тура, содержащая воздух. Этим объясняются хорошие теплоизолирующие свойства шерстяной и меховой одежды. Температура воздуха под одеждой достигает 30 °С. Наоборот, обнаженное тело теряет тепло, потому что воздух на его поверхности все время сменяется. Поэтому температура кожи обнаженных частей тела намного ниже, чем одетых.

В значительной степени препятствует теплоотдаче слой подкожной жировой клет­чатки в связи с малой теплопроводностью жира.

Температура кожи, а следовательно, интенсивность теплоизлучения и теплопрове- дения могут изменяться в результате перераспределения крови в сосудах и при изменении объема циркулирующей крови.

На холоде кровеносные сосуды кожи, главным образом артериольг, сужаются; большее количество крови поступает в сосуды брюшной полости и тем самым ограничи­вается теплоотдача. Поверхностные слои кожи, получая меньше теплой крови, излучают меньше тепла —теплоотдача уменьшается. При сильном охлаждении кожи, кроме того, происходит открытие артериовенозных анастомозов, что уменьшает количество крови, поступающей в капилляры, и тем самым препятствует теплоотдаче.

Перераспределение крови, происходящее на холоду — уменьшение количества крови, циркулирующей через поверхностные сосуды, и увеличение количества крови, проходящей через сосуды внутренних органов, способствует сохранению тепла во внут­ренних органах. Эти факты служат основанием для утверждения, что регулируемым параметром является именно температура внутренних органов, которая поддерживается на постоянном уровне.

При повышении температуры окружающей среды сосуды кожи расширяются, количество циркулирующей в них крови увеличивается. Возрастает также объем цирку­лирующей крови во всем организме вследствие перехода воды из тканей в сосуды, а также потому, что селезенка и другие кровяные депо выбрасывают в общий кровоток дополни­тельные количества крови. Увеличение количества крови, циркулирующей через сосуды поверхности тела, способствует теплоотдаче посредством радиации и конвекции.

Для сохранения постоянства температуры тела человека при высокой температуре окружающей среды основное значение имеет испарение пота с поверхности кожи.

Значение потоотделения для поддержания постоянства температуры тела видно из следующего подсчета: в летние месяцы температура окружающего воздуха в средних широтах нередко равна температуре тела человека. Это означает, что организм человека, живущего в этих условиях, не может отдавать образующееся в нем самом тепло путем радиации и конвекции. Единственным путем для отдачи тепла остается испарение воды. Приняв, что среднее теплообразование в сутки равно 10 048—11 723 кДж (2400—2800 ккал), и зная, что на испарение 1 г воды с поверхности тела расходуется 2,43 кДж (0,58 ккал), получаем, что для поддержания температуры тела человека на постоянном уровне в таких условиях необходимо испарение 4,5 л воды. Особенно интенсивно потоотделение.происходит при высокой окружающей температуре во время мышечной работы, когда возрастает теплообразование в самом организме. При очень тяжелой работе выделение пота у ра­бочих горячих цехов может составить 12 л за день.

Испарение воды зависит от относительной влажности воздуха. В насыщенном водя­ными парами воздухе вода испаряться не может. Поэтому при высокой влажности атмос­феры высокая температура переносится тяжелее, чем при низкой влажности. В насы­щенном водяными парами воздухе (например, в бане) пот выделяется в большом количестве, но не испаряется и стекает с кожи. Такое потоотделение не способствует отдаче тепла; только эта часть пота, которая испаряется с поверхности кожи, имеет значение для теплоотдачи (эта часть пота составляет эффективное потоотделение).

Плохо переносится также непроницаемая для воздуха одежда (резиновая и т. п.), препятствующая испарению пота: слой воздуха между одеждой и телом быстро насы­щается парами и дальнейшее испарение пота прекращается.


Изодинамия питательных веществ - student2.ru
36°С
зге

Основной обмен- Нервные и гуморальные влия­ния на клеточный метаболизм

Мышечная деятельность

Физическая терморегуляция
Изодинамия питательных веществ - student2.ru
Хнмичесная терморег
Изодинамия питательных веществ - student2.ru
ножных сосудов
■Поза
JJ
Реакция ножных
■Потоотделение
---- Легочная вентиляция

Специфически-динами-^^_

Наши рекомендации