Физиология сердечно-сосудистой системы. Физиология сердца, его нагнетающая функция. Сердечный цикл.

Физиология сердечно-сосудистой системы. Физиология сердца, его нагнетающая функция. Сердечный цикл.

Микроструктура и физиологические свойства сердечной мышцы.

Мышечная ткань сердца состоит из отдельных клеток — миоцитов. Различают два вида миоцитов — сердечные проводящие миоцит (обеспечивают автоматизм) и сократительные миоциты (рабочая мускулатура).

Особенности физиологических свойств сердечной мышцы

Возбудимость

При частых раздражениях сердечная мышца в отличие от скелетных не дает тетануса. Если при раздражении скелетной мышцы каждый последующий импульс попадает в период расслабления, возникает зубчатый тетанус, а если в период укорочения — гладкий. Совсем по-иному отвечает сердечная мышца: если последующие раздражения совпадают с периодом сокращения, или систолой, то они не будут воспроизводиться, т.е. сердце на них не реагирует; если в период расслабления (диастолы),— то вместо ожидаемого зубчатого тетануса сердечная мышца ответит только одним внеочередным сокращением, называемым экстрасистолой.

Проводимость

Возбуждение в сердечной мышце распространяется в различных направлениях от места его возникновения. Впервые это было показано Энгельманом в опыте: при нанесении раздражения на один участок мышцы она сокращалась вся целиком, что доказывало распространение возбуждения не только в продольном, но и в поперечном направлении.

Рефрактерность

Период рефрактерности значительно более выраженный и удлиненный по сравнению с другими возбудимыми тканями.

Сократимость

Закон «все или ничего». Сердечная мышца в отличие от скелетной (поперечнополосатой) подчиняется закону «все или ничего», т.е. она не отвечает на подпороговые раздражения, а на пороговое и надпороговое реагирует как одиночное исчерченное мышечное волокно — сокращением максимальной амплитуды.

Закон Старлинга. Согласно закону, сила сокращения волокон сердечной мышцы зависит от их первоначальной длины во время покоя. Чем сильнее растяжение полостей сердца кровью, тем мощнее систола и тем больше крови выбрасывает сердце при одной систоле. Этот закон справедлив только при средних величинах растяжения сердечной мышцы.

Автоматизм

Автоматизм — способность сердца сокращаться под влиянием импульсов, возникающим в нем самом. Ритмическая деятельность сердца происходит благодаря наличию в области ушка правого предсердия ведущего центра автоматизма — синусно-предсердного (синусного) узла. От него по проводящим волокнам предсердий возбуждение достигает атриовентрикулярного узла, расположенного в стенке правого предсердия вблизи перегородки между предсердиями и желудочками. Здесь возбуждение переходит на миокард желудочков по волокнам пучка Гиса (предсердно-желудочкового пучка) и достигает волокон Пуркинье (сердечных проводящих миоцитов). В норме водителем ритма сердца является синусно-предсердный узел; он обладает всеми качествами истинного пейсмекера (задаватель ритма).

Гемодинамическая функция сердца.

Сердце как насос. Работа сердца проявляется последовательными ритмическими сокращениями предсердий и желудочков, чередующимися с их расслаблениями. Сокращение любого отдела сердца называется систолой, расслабление — диастолой, общий покой — паузой. Систола предсердий происходит на фоне диастолы желудочков, вслед за тем возникает систола желудочков, а предсердия находятся в диастоле. Далее вся мышца сердца приходит в состояние покоя. После паузы наступает новое чередование его работы в том же порядке. Каждое повторение работы сердца и покоя называется одиночным циклом сердечной деятельности.

Регуляция сердечной деятельности

Гемодинамическая регуляция

В основе гемодинамической регуляции силы сердечных сокращений лежит закон Франка—Старлинга:

чем больше крови притекает к сердцу во время диастолы, тем сильнее растягиваются волокна сердечной мышцы и тем сильнее оно сокращается при следующей систоле.

Внутрисердечная регуляция

Установлено, что внутрисердечная регуляция осуществляется интракардиальными периферическими рефлексами. Интракардиальные рефлекторные дуги включают афферентные нейроны, дендриты которых образуют рецепторы растяжения миокарда и коронарных сосудов, а также эфферентные нейроны, аксоны которых иннервируют миокард и гладкую мускулатуру коронарных сосудов. Чувствительные клетки соединены синаптическими связями с эфферентными нейронами через систему одного или более интернейронов.

Среди эфферентных нейронов найдены не только холинергические, но и адренергические клетки, причем последние обладают большей возбудимостью по сравнению с холинергическими.

При слабом кровенаполнении афферентация от рецепторов сердца ведет к возбуждению адренергических нейронов, а выделяемый ими медиатор норадреналин оказывает стимулирующее влияние на сердце. При чрезмерном наполнении камер сердца кровью и интенсивном раздражении рецепторов возбуждаются холинергические эфферентные нейроны, оказывая тормозные эффекты на сердце.

Внесердечная регуляция

Внесердечная нервная регуляция сердечной деятельности осуществляется с помощью центробежных нервов сердца, принадлежащих вегетативной нервной системе.

Парасимпатическая иннервация представлена ветвями блуждающих нервов. Если на шее животного перерезать один блуждающий нерв, а его периферический конец, идущий к сердцу, раздражать электрическим током, то при слабом раздражении возникает урежение сокращений сердца и ослабевает их сила. Если раздражение усилить, может произойти полная остановка сердца во время диастолы желудочков. Установлено, что правый блуждающий нерв в большей степени влияет на синусный, а левый — на атриовентрикулярный узел.

Симпатическая иннервация. Ветви симпатических нервов берут начало от грудного отдела спинного мозга. Раздражение симпатических нервов оказывает влияние, противоположное действию блуждающих нервов: увеличиваются частота и сила сердечных сокращений, улучшается проводимость и повышается возбудимость.

Общие законы гемодинамики

Согласно законам гидродинамики, движение жидкости по трубам определяется разностью давлений в начале и в конце трубы, ее диаметром и сопротивлением, которое испытывает текущая жидкость вследствие трения между отдельными слоями жидкости и о стенки трубы. Разность давлений способствует движению жидкости, а сопротивление препятствует ему. Отношение этих величин определяет объемную скорость, т.е. объем жидкости, протекающей в единицу времени.

Объемная скорость кровотока. Объемная скорость кровотока зависит от просвета сосуда: самая высокая скорость кровотока — в аорте и полых венах, самая низкая — в каждом отдельном капилляре. Однако объемная скорость кровотока постоянна во всех сосудах одного калибра, так как количество крови, протекающей через разные участки сосудистого русла, например через все артерии и вены, одинаково в единицу времени.

Линейная скорость кровотока. Кроме объемной скорости кровотока, важным показателем гемодинамики является линейная скорость кровотока, т.е. расстояние, которое частица крови проходит за единицу времени.

Во время выброса крови из сердца линейная скорость крови равняется 0,5—0,6 м/с. Во время диастолы скорость падает до 0. В артериях максимальная скорость кровотока равняется 0,25—0,4 м/с. В артериолах толчкообразное течение крови сменяется непрерывным. Самая низкая скорость кровотока в капиллярах — 0,5 мм/с. В венах линейная скорость кровотока возрастает до 0,05—0,1 м/с, а в полых венах-до 0,2 м/с.

Физиология сердечно-сосудистой системы. Физиология сердца, его нагнетающая функция. Сердечный цикл. - student2.ru

Иннервация сосудов

Главными сосудосуживающими нервами являются симпатические волокна. Поскольку перерезка симпатических нервов вызывает расширение сосудов той области, которая иннервируется этими нервами, считают, что артерии и артериолы находятся под непрерывным сосудосуживающим влиянием симпатических нервов.

Сосудорасширяющие эффекты (вазодилатация) впервые обнаружили при раздражении нескольких нервных веточек, относящихся к парасимпатическому отделу автономной нервной системы.

Сосудодвигательный центр

Ф.В. Овсянников (1871) установил, что нервный центр, обеспечивающий определенную степень сужения артериального русла — сосудодвигателъный центр, — находится в продолговатом мозге на дне IV желудочка и состоит из двух отделов — прессорного и депрессорного. Раздражение прессорного отдела сосудодвигательного центра вызывает сужение артерий и подъем АД, а раздражение второго—расширение артерий и падение АД.

Считают, что депрессорный отдел сосудодвигательного центра вызывает расширение сосудов, понижая тонус прессорного отдела и снижая, таким образом, эффект сосудосуживающих нервов.

Сосудосуживающие вещества.

К ним относятся гормоны мозгового вещества надпочечников — адреналин и норадреналин, а также нейрогипофиза—вазопрессин.

Адреналин и норадреналин суживают артерии и артериолы кожи, органов брюшной полости и легких, а вазопрессин действует преимущественно на артериолы и прекапилляры.

К числу гуморальных сосудосуживающих факторов относится серотонин (5- гидроокситриптамин), продуцируемый в слизистой оболочке кишечника и в некоторых участках головного мозга. Серотонин образуется также при распаде тромбоцитов; физиологическое значение его в данном случае состоит в том, что он суживает сосуды и препятствует кровотечению из пораженного сосуда.

Сосудорасширяющие вещества.

К сосудорасширяющим веществам относится ацетилхолин (АХ), который образуется в окончаниях парасимпатических нервов и симпатических вазодилататоров. Он быстро разрушается в крови, поэтому его действие на сосуды в физиологических условиях местное.

Сосудорасширяющим веществом является также гистамин — вещество, образующееся в слизистой оболочке желудка и кишечника, а также во многих других органах, в частности в коже при ее раздражении и в скелетной мускулатуре во время работы. Гистамин расширяет артериолы и увеличивает кровенаполнение капилляров.

Депрессорные механизмы

Простагландины представляют собой ненасыщенные циклические жирные кислоты, продукты метаболизма арахидоновой кислоты.

Ведущую роль в регуляции сосудистого тонуса и АД играет простациклин, образующийся в эндотелии и гладкомышечных клетках кровеносных сосудов. Он циркулирует в крови, оказывая вазодилатирующий эффект.

Мозговое вещество и сосочек почки — зоны наиболее интенсивного синтеза простагландинов.

Калликреин-кининовая система подразделяется на два физиологических аппарата — плазменный и почечный (железистый).

Допаминергические депрессорные механизмы. Свободный допамин образуется в почках и является нейромедиатором с самостоятельной физиологической ролью в ЦНС и на периферии. Существует два типа периферических допаминовых рецепторов — постсинаптические в гладкомышечных клетках сосудов и пресинаптические в окончаниях симпатических нервов.

Активация периферических допаминовых рецепторов в окончаниях симпатических нервов вызывает торможение высвобождения норадреналина из депо симпатических терминалей, снижает ЧСС и АД.

Физиология сердечно-сосудистой системы. Физиология сердца, его нагнетающая функция. Сердечный цикл.

Наши рекомендации