Естествознание и основы экологии.
Учебное пособие для средних педагогических учебных заведений.
М.: Дрофа, 2007, 303 стр.
Пособие написано в соответствии с государственным образовательным стандартом и программой по естествознанию для педагогических училищ и колледжей. В него включены основные сведения по астрономии, физической географии, биологии. Особое внимание уделено основам экологии, выявлению закономерностей взаимоотношения организмов со средой обитания, вопросам охраны природы.
Для студентов и преподавателей педагогических училищ и колледжей, а также факультетов начальных классов педагогических вузов.
Оглавление
Предисловие
Введение
1. ЗЕМЛЯ – ПЛАНЕТА СОЛНЕЧНОЙ СИСТЕМЫ
§ 1. Строение и состав Солнечной системы. Две группы планет
§ 2. Планеты земной группы. Система Земля – Луна
§ 3. Наши соседи – Меркурий, Венера и Марс
§ 4. Малые тела Солнечной системы
§ 5. Происхождение Солнечной системы
§ 6. Солнце
§ 7. Звезды
§ 8. Наша Галактика
§ 9. Строение и эволюция Вселенной
2. ФОРМА И ДВИЖЕНИЕ ЗЕМЛИ. ПЛАН И КАРТА
§ 10. Шарообразность и вращение Земли
§ 11. Измерение времени
§ 12. Ориентирование и измерение расстояний на местности
§ 13. Глобус и градусная сеть
§ 14. Географические карты
3. ВНУТРЕННЕЕ СТРОЕНИЕ И РЕЛЬЕФ ЗЕМЛИ
§ 15. Методы изучения внутреннего строения Земли
§ 16. Внутреннее строение Земли
§ 17. Физические свойства и химический состав Земли
§ 18. Движение земной коры
§ 19. Вулканы и землетрясения
§ 20. Внешние процессы, преображающие поверхность Земли
§ 21. Минералы и горные породы
§ 22. Развитие земной коры
§ 23. Рельеф земного шара
§ 24. Почва
4. ВОДНАЯ ОБОЛОЧКА ЗЕМЛИ
§ 25. Общие сведения о воде
§ 26. Мировой океан
§ 27. Подземные воды
§ 28. Реки
§ 29. Озера и болота
5. ВОЗДУШНАЯ ОБОЛОЧКА ЗЕМЛИ
§ 30. Состав и строение атмосферы
§ 31. Нагревание атмосферы
§ 32. Температура воздуха
§ 33. Вода в атмосфере
§ 34. Образование облаков, осадки
§ 35. Давление атмосферы
§ 36. Ветры, их виды
§ 37. Погода и ее прогнозирование
§ 38. Понятие о климате
6. БИОСФЕРА. ГЕОГРАФИЧЕСКАЯ ОБОЛОЧКА
§ 39. Свойства биосферы
§ 40. Круговорот веществ и энергии в биосфере
§ 41. Географическая оболочка
§ 42. Природные зоны России
7. СТРОЕНИЕ И ОСОБЕННОСТИ ЖИЗНЕДЕЯТЕЛЬНОСТИ ЖИВЫХ ОРГАНИЗМОВ
§ 43. Основные критерии живого
§ 44. Строение клетки
§ 45. Особенности жизнедеятельности клетки
§ 46. Типы обмена веществ у организмов
§ 47. Раздражимость и движение организмов
§ 48. Жизненный цикл клетки
§ 49. Формы размножения организмов
8. МНОГООБРАЗИЕ ОРГАНИЧЕСКОГО МИРА
§ 50. Система классификации живых организмов
§ 51. Бактерии. Грибы. Лишайники
§ 52. Растения, их строение. Вегетативные органы
§ 53. Генеративные органы растений
§ 54. Систематика растений. Низшие растения
§ 55. Высшие споровые растения
§ 56. Семенные растения
§ 57. Царство животных. Простейшие
§ 58. Царство животных. Многоклеточные: губки и кишечнополостные
§ 59. Плоские, круглые и кольчатые черви
§ 60. Членистоногие
§ 61. Моллюски и иглокожие
§ 62. Хордовые. Рыбы
§ 63. Земноводные и пресмыкающиеся
§ 64. Птицы
§ 65. Млекопитающие, или звери
9. ОСНОВЫ ЭКОЛОГИИ
§ 66. Экология как наука. Экологические факторы
§ 67. Воздействие на организмы некоторых экологических факторов
§ 68. Взаимодействие факторов. Ограничивающий фактор
§ 69. Основные свойства популяций
§ 70. Взаимоотношения организмов. Биотические факторы среды
§ 71. Экологические системы
§ 72. Поток энергии в экосистемах и пищевые цепи
§ 73. Свойства и структура биоценозов
§ 74. Разнообразие биоценозов
§ 75. Искусственные экосистемы. Агроценоз
§ 76. Эволюция экосистем
§ 77. Антропогенное воздействие на природные экосистемы
§ 78. Рациональное природопользование
§ 79. Человек и биосфера
Предисловие
Данное пособие представляет интегрированный курс естествознания для СПО педагогического профиля. При его написании авторы исходили из того, что будущему учителю начальных классов необходимы комплексные знания по основам астрономии, физической географии, биологии и экологии для преподавания предметов «Природоведение» и «Окружающий мир». Задача книги – сообщить студентам основы этих знаний с акцентом на экологические проблемы. Мы постарались сделать учебник доступным и полезным, снабдили его максимально иллюстративным материалом.
Предлагаемое пособие будет интересно не только студентам СПО, но и учителям начальных классов, желающим пополнить свои знания в области естественных наук.
Первая глава посвящена астрономии. В ней рассматриваются вопросы строения и состава Солнечной системы, ее происхождения, кратко рассматривается строение нашей Галактики и эволюция Вселенной.
В главах II, III, IV, V представлены основы физической географии. Здесь освещены вопросы строения Земли, ее географических оболочек и процессы, которые в них происходят.
Значительное место отводится биологическим и экологическим знаниям, так как они составляют основу курса природоведения в начальной школе. Этим вопросам посвящены главы VI, VII, VIII и IX. В них представлен материал о биосфере и природных зонах Земли, даны характеристики клетки и процессов, протекающих на клеточном уровне, строение и систематика организмов всех царств живой природы. Наиболее подробно рассмотрены строение и многообразие растений и животных.
Авторы благодарят всех рецензентов за ценные пожелания и высказанные замечания.
Введение
Наука представляет собой внутреннее единое целое. Ее разделение на отдельные области обусловлено не столько природой вещей, сколько ограниченностью способностей человеческого познания. В действительности существует непрерывная цепь от физики и химии через биологию и антропологию к социальным наукам, цепь, которая ни в одном месте не может быть разорвана, разве лишь по произволу.
М. Планк
На протяжении всей истории цивилизации человечество стремится познать окружающий мир и понять, какое место оно занимает во Вселенной. Многие идеи и мысли, которые впоследствии отразились в современных естественнонаучных представлениях о природе, зародились в Древней Греции еще за несколько веков до нашей эры. Именно там началось бурное развитие философиикак науки о природе, когда вместо простого созерцания явлений и их наивного толкования древнегреческие философы стали делать попытки научного объяснения причин наблюдаемых явлений природы.
В древности было естественным считать окружающий мир таким, каким его человек непосредственно воспринимал своими органами чувств. В частности, было очевидно, что Земля является неподвижной, плоской и находится в центре мира, а Солнце и все другие небесные светила движутся вокруг нее. Казалось, что все наблюдения древних людей подтверждали это. Более того, со временем сложилось представление, что вообще весь мир создан ради человека. Подобные представления получили название антропоцентризм(от греческого слова антропос– человек).
Однако, как известно, «неумолимые факты свергли его (человека) с того трона, который он строил себе в центре Вселенной. Отныне он должен смириться с положением жителя – пылинки средь миров…». Эти слова были сказаны в начале XX в. одним из выдающихся ученых астрофизиком Джеймсом Джинсом.
«Он остановил Солнце и сдвинул Землю» – так гласит надпись на пьедестале памятника Николаю Копернику. Этот памятник был открыт в Варшаве лишь в 1830 г., много лет спустя после смерти ученого, совершившего выдающийся научный подвиг еще в XVI в. Действительно, учение Н. Коперника ознаменовало новый этап в развитии не только астрономии, но и всего естествознания. Оно совершило переворот в мировоззрении человечества. Для науки в целом и для естествознания в особенности важную роль сыграла идея Коперника о том, что за видимой картиной происходящих явлений, которая кажется нам истинной, надо искать и находить недоступную для непосредственного наблюдения сущность этих явлений.
Древняя вера в непосредственную видимость служила серьезным барьером на пути развития химии. Это проявилось, в частности, на примере понимания такого распространенного процесса, как горение. Долгое время оно считалось процессом распада тел. Лишь в конце XVIII в. французский химик А. л. Лавуазье, правильно обосновав эмпирическое открытие кислорода, показал, что горение – это не распад тел, а их соединение с кислородом. В результате была разработана кислородная теория целого ряда химических процессов – горения, окисления металлов и других элементов, а также процесса дыхания. Как и в случае с движением небесных тел, стало очевидно, что за внешней стороной (видимостью) химических процессов скрывается их сущность, недоступная нашему непосредственному восприятию.
Тем самым ломался привычный способ мышления людей, менялось восприятие ими объектов и явлений внешнего мира.
Наука представляет собой систему знаний, которая включает и методы познания мира, и способы, и стиль мышления, развивающиеся по мере развития самой науки и всей человеческой цивилизации.
Нередко можно услышать, что благодаря успешной работе ученых была раскрыта еще одна тайна природы. Разумеется, важнейшая задача любой науки – познать природу явлений и процессов, однако это вовсе не означает, что природа каким-то образом скрывает от нас свои тайны. Нетрудно убедиться, что никаких тайн у природы нет: она всегда перед нами во всем своем многообразии. Вовсе не природа и ее мифические тайны, а ограниченность мышления самого человека, зачастую не способного преодолеть сложившиеся стереотипы и предрассудки, мешает познанию окружающего нас мира. Наука и формируемый в процессе ее развития научный способ мышления создают человеку возможность правильно «задавать» природе вопросы и находить на них ответы.
Научные теории помогают нам увидеть и понять характер связи между явлениями, которые порой кажутся совершенно разными и не связанными друг с другом, предсказывать результаты опытов и экспериментов, прогнозировать последующие события. Наука старается проникнуть в суть происходящих событий, пытается их понять на основе аналогий между привычным миром повседневного опыта и необычным миром, который открывается перед человеком в процессе наблюдений и научных экспериментов.
Язык, который при этом используется, те слова, которые употребляются в научных рассуждениях, неизбежно оказываются сходными с привычными, повседневными. Однако слова эти в науке и в «обычной» жизни имеют порой разный смысл.
Одним из важнейших в любой науке о природе является понятие «закон». Это слово заимствовано из повседневной жизни, где оно понимается как свод правил, соблюдение которых в обществе признается обязательным, а несоблюдение влечет за собой то или иное наказание.
В науке закон – тоже своеобразный свод правил о характере протекания тех или иных явлений. Необходимо знать эти правила, чтобы понимать происходящие вокруг них явления. «Наказанием» за их незнание являются непонимание этих явлений, ошибки в рассуждениях, которые становятся тормозом на пути развития мышления, прогресса. Однако человек не может по своему желанию подчинить явление природы тому или иному закону, он может лишь понять закономерности протекания этого явления и выразить их в виде закона.
Обобщить все знания, которые к IV в. до н. э. были накоплены путем наблюдений и опыта, сумел выдающийся философ античного мира Аристотель (384–322 до н. э.). Его деятельность охватывала все естественные науки – сведения о небе и Земле, о закономерностях движения тел, о животных и растениях и т. д. Но главной заслугой Аристотеля как ученого-энциклопедиста стало именно создание единой системы научных знаний, которой до его трудов еще не существовало. Авторитет Аристотеля в научном мире был столь высок, что на протяжении почти двух тысячелетий его мнение по многим вопросам не подвергалось сомнению.
После расцвета античной культуры в Европе начался длительный период (более 1000 лет), в течение которого не было сделано ни одного существенного научного открытия. Поиски первоосновы окружающего мира и попытки понять его строение надолго прекратились.
Только в начале второго тысячелетия характер жизни в Европе, пережившей мрачную эпоху Средневековья, стал меняться. Развивались ремесла, торговля и мореплавание, появилась потребность в образованных людях. В различных городах Западной Европы стали основываться университеты. Первым из них стал университет в Болонье (1119), в котором впоследствии довелось учиться Николаю Копернику, затем открылись университеты в Равенне (1130), Париже (1200), Кембридже (1209), Оксфорде (1214) и т. д.
Но это было только началом возрождения наук. «В 1500 г. Европа знала меньше, чем Архимед, который умер в 212 г. до н. э.» – так заметил позднее наш современник, английский ученый Эдмунд Уайтекер. Примечательно, например, что в Париже в 1626 г. был принят указ, под страхом смертной казни запрещавший распространение учения об атомах.
Лишь в эпоху Возрождения началось победное шествие атомистических представлений.
Вера в качественную тождественность макро– и микромира была характерной чертой научных представлений вплоть до начала XX в. Открытия в физике, которые ликвидировали «перегородки» между такими, казалось бы, различными понятиями, как вещество и свет, пространство и время, масса и энергия, разрушили эту веру.
Как и прежде, то, что в современных научных теориях кажется странным и непривычным с обыденной точки зрения, становится серьезным препятствием на пути их понимания. Однако вся история развития естественнонаучных представлений говорит о том, что подобные барьеры преодолимы. Надеемся, что вам, как и человечеству в целом, удастся успешно преодолевать этот барьер.
ЗЕМЛЯ – ПЛАНЕТА СОЛНЕЧНОЙ СИСТЕМЫ
§ 1. Строение и состав Солнечной системы. Две группы планет
Наша Земля входит в число 8 больших планет, обращающихся вокруг Солнца. Именно в Солнце сосредоточена основная часть вещества Солнечной системы. Масса Солнца в 750 раз превосходит массу всех планет и в 330 000 раз – массу Земли. Под действием силы его притяжения происходит движение планет и всех других тел Солнечной системы вокруг Солнца.
Расстояния между Солнцем и планетами во много раз превосходят их размеры, и нарисовать такую схему, на которой соблюдался бы единый масштаб для Солнца, планет и расстояний между ними, практически невозможно. Диаметр Солнца в 109 раз больше, чем Земли, а расстояние между ними примерно во столько же раз больше диаметра Солнца. К тому же расстояние от Солнца до последней планеты Солнечной системы (Нептуна) в 30 раз больше, чем расстояние до Земли. Если изобразить нашу планету в виде кружочка диаметром 1 мм, то Солнце окажется на расстоянии около 11 м от Земли, а его диаметр будет примерно 11 см. Орбита Нептуна будет показана окружностью радиусом 330 м. Поэтому обычно приводят не современную схему Солнечной системы, а лишь рисунок из книги Коперника «Об обращении небесных кругов» с иными, весьма приблизительными пропорциями.
По физическим характеристикам большие планеты разделяются на две группы. Одну из них – планеты земной группы – составляют Земля и сходные с ней Меркурий, Венера и Марс. Во вторую входят планеты-гиганты:Юпитер, Сатурн, Уран и Нептун (табл. 1).
Таблица 1
Расположение и физические характеристики больших планет
До 2006 г. самой далекой от Солнца большой планетой считался Плутон. Теперь он вместе с другими объектами подобного размера – давно известными крупными астероидами (см. § 4) и объектами, обнаруженными на окраинах Солнечной системы, – относится к числу планет-карликов.
Разделение планет на группы прослеживается по трем характеристикам (масса, давление, вращение), но наиболее четко – по плотности. Планеты, принадлежащие к одной и той же группе, по плотности различаются между собой незначительно, в то время как средняя плотность планет земной группы примерно в 5 раз больше средней плотности планет-гигантов (см. табл. 1).
Большая часть массы планет земной группыприходится на долю твердых веществ. Земля и другие планеты земной группы состоят из оксидов и других соединений тяжелых химических элементов: железа, магния, алюминия и других металлов, а также кремния и других неметаллов. На долю четырех наиболее обильных в твердой оболочке нашей планеты (литосфере) элементов – железа, кислорода, кремния и магния – приходится свыше 90 % ее массы.
Малая плотность планет-гигантов(у Сатурна она меньше плотности воды) объясняется тем, что они состоят в основном из водорода и гелия, которые находятся преимущественно в газообразном и жидком состояниях. Атмосферы этих планет содержат также соединения водорода – метан и аммиак. Различия между планетами двух групп возникли уже на стадии их формирования (см. § 5).
Из планет-гигантов лучше всего изучен Юпитер, на котором даже в небольшой школьный телескоп видны многочисленные темные и светлые полосы, тянущиеся параллельно экватору планеты. Так выглядят облачные образования в его атмосфере, температура которых всего -140 °C, а давление примерно такое же, как у поверхности Земли. Красновато-коричневый цвет полос объясняется, видимо, тем, что, помимо кристаллов аммиака, составляющих основу облаков, в них содержатся различные примеси. На снимках, полученных космическими аппаратами, видны следы интенсивных и иногда устойчивых атмосферных процессов. Так, уже свыше 350 лет на Юпитере наблюдают атмосферный вихрь, получивший название Большое Красное Пятно. В земной атмосфере циклоны и антициклоны существуют в среднем около недели. Атмосферные течения и облака зафиксированы космическими аппаратами и на других планетах-гигантах, хотя развиты они в меньшей степени, чем на Юпитере.
Строение. Предполагают, что по мере приближения к центру планет-гигантов водород вследствие возрастания давления должен переходить из газообразного в газожидкое состояние, при котором сосуществуют его газообразная и жидкая фазы. В центре Юпитера давление в миллионы раз превышает атмосферное давление, существующее на Земле, и водород приобретает свойства, характерные для металлов. В недрах Юпитера металлический водород вместе с силикатами и металлами образует ядро, которое по размерам примерно в 1,5 раза, а по массе в 10–15 раз превосходит Землю.
Масса. Любая из планет-гигантов превосходит по массе все планеты земной группы, вместе взятые. Самая крупная планета Солнечной системы – Юпитер больше самой крупной планеты земной группы – Земли по диаметру в 11 раз и по массе в 300 с лишним раз.
Вращение. Отличия между планетами двух групп проявляются и в том, что планеты-гиганты быстрее вращаются вокруг оси, и в числе спутников: на 4 планеты земной группы приходится всего 3 спутника, на 4 планеты-гиганта – более 120. Все эти спутники состоят из тех же веществ, что и планеты земной группы, – силикатов, оксидов и сульфидов металлов и т. д., а также водяного (или водно-аммиачного) льда. Помимо многочисленных кратеров метеоритного происхождения, на поверхности многих спутников обнаружены тектонические разломы и трещины их коры или ледяного покрова. Самым удивительным оказалось открытие на ближайшем к Юпитеру спутнике Ио около десятка действующих вулканов. Это первое достоверное наблюдение вулканической деятельности земного типа за пределами нашей планеты.
Кроме спутников, планеты-гиганты имеют еще и кольца, которые представляют собой скопления небольших по размеру тел. Они так малы, что в отдельности не видны. Благодаря их обращению вокруг планеты кольца кажутся сплошными, хотя сквозь кольца Сатурна, например, просвечивают и поверхность планеты, и звезды. Кольца располагаются в непосредственной близости от планеты, где не могут существовать крупные спутники.
Планеты земной группы. Система Земля – Луна
Благодаря наличию спутника, Луны, Землю нередко называют двойной планетой. Этим подчеркивается как общность их происхождения, так и редкостное соотношение масс планеты и ее спутника: Луна всего в 81 раз меньше Земли.
О природе Земли будут даны достаточно подробные сведения в последующих главах учебника. Поэтому здесь мы расскажем об остальных планетах земной группы, сравнивая их с нашей, и о Луне, которая хотя и является лишь спутником Земли, но по своей природе относится к телам планетного типа.
Несмотря на общность происхождения, природа Луны существенно отличается от земной, что определяется ее массой и размерами. Из-за того что сила тяжести на поверхности Луны в 6 раз меньше, чем на поверхности Земли, молекулам газа гораздо легче покинуть Луну. Поэтому наш естественный спутник лишен заметной атмосферы и гидросферы.
Отсутствие атмосферы и медленное вращение вокруг оси (сутки на Луне равны земному месяцу) приводят к тому, что в течение дня поверхность Луны нагревается до 120 °C, а ночью остывает до -170 °C. Из-за отсутствия атмосферы лунная поверхность подвержена постоянной «бомбардировке» метеоритами и более мелкими микрометеоритами, которые падают на нее с космическими скоростями (десятки километров в секунду). В результате вся Луна покрыта слоем мелкораздробленного вещества – реголита. Как описывают американские астронавты, побывавшие на Луне, и как показывают снимки следов луноходов, по своим физико-механическим свойствам (размеры частиц, прочность и т. п.) реголит похож на мокрый песок.
При падении на поверхность Луны крупных тел образуются кратеры размером до 200 км в диаметре. Кратеры метрового и даже сантиметрового диаметра хорошо видны на панорамах лунной поверхности, полученных с космических аппаратов.
В лабораторных условиях детально исследованы образцы пород, доставленных нашими автоматическими станциями «Луна» и американскими астронавтами, побывавшими на Луне на космическом корабле «Аполлон». Это позволило получить более полные сведения, чем при анализе пород Марса и Венеры, который проводился непосредственно на поверхности этих планет. Лунные породы похожи по своему составу на земные породы типа базальтов, норитов и анортозитов. Набор минералов в лунных породах беднее, чем в земных, но богаче, чем в метеоритах. На нашем спутнике нет и не было ни гидросферы, ни атмосферы такого состава, как на Земле. Поэтому там отсутствуют минералы, которые могут образовываться в водной среде и при наличии свободного кислорода. Лунные породы по сравнению с земными обеднены летучими элементами, но отличаются повышенным содержанием оксидов железа и алюминия, а в некоторых случаях титана, калия, редкоземельных элементов и фосфора. Никаких признаков жизни даже в виде микроорганизмов или органических соединений на Луне не обнаружено.
Светлые области Луны – «материки» и более темные – «моря» отличаются не только по внешнему виду, но также по рельефу, геологической истории и химическому составу покрывающего их вещества. На более молодой поверхности «морей», покрытой застывшей лавой, кратеров меньше, чем на более древней поверхности «материков». В различных частях Луны заметны такие формы рельефа, как трещины, по которым происходит смещение коры по вертикали и горизонтали. При этом образуются только горы сбросового типа, а складчатых гор, столь типичных для нашей планеты, на Луне нет.
Отсутствие на Луне процессов размывания и выветривания позволяет считать ее своеобразным геологическим заповедником, где на протяжении миллионов и миллиардов лет сохраняются все возникавшие за это время формы рельефа. Таким образом, изучение Луны дает возможность понять геологические процессы, происходившие на Земле в далеком прошлом, от которого на нашей планете не осталось никаких следов.