Методы научного исследования в экологии. Положение экологии в системе наук о природе. Прикладное значение экологии.

В экологии часто используются методы, применяемые в других науках, как в биологических (биогеохимия, анатомия, физиология, и др.), так и небиологических (физика, химия, геодезия, метеорология и др.). Но для выявления специфики экологических закономерностей существуют исключительно собственные – экологические методы. Они делятся на полевые, лабораторные, экспериментальные, количественные (математическое моделирование) методы.

Полевые методыимеют первостепенное значение. Они предполагают изучение популяций и сообществ в естественной среде (в природе) и позволяют установить воздействие на объект комплекса факторов, изучить общую картину развития и жизнедеятельности изучаемого объекта.

В качестве примера можно привести леса на склонах разных экспозиций, на разных почвах, на разных географических широтах. Или водные экосистемы на разной глубине в одном и том же море, на одной глубине в южных и северных морях. Все они, несмотря на различия, развиваются по одним и тем же законам, под влиянием комплекса факторов, но значения этих факторов разные и зависят от местоположения объекта исследований.

Однако в полевых исследованиях очень сложно выявить роль одного фактора, как биотического (конкуренции, аллелопатии, плодородия почв), так и абиотического (тепло, влаги, света, засоления, кислотности почв), тем более, что все факторы функционально связаны друг с другом.

Известно, что нередко ограничение одного из них сопряжено с изменением другого. Так, холодность почв с многолетней мерзлотой способствует их переувлажнению и, как следствие, анаэробиозису. В результате резко ухудшаются условия усвоения корнями растений элементов питания. В Приморье, как правило, высокая инсоляция южных склонов сопровождается высокой сухостью субстрата и формированием ксерофитных криволесий.

Исследовать роль конкретного фактора можно при постановке эксперимента в полевых или лабораторных условиях.

Экспериментальные методы отличаются от полевых тем, что организмы искусственно ставятся в условия, при которых можно дозировать размер изучаемого фактора, следовательно, можно точнее, чем при обычном наблюдении, оценить его влияние. При этом выводы, полученные в лаборатории, требуют обязательной проверки в полевых условиях.

В качестве примеров экологических экспериментов можно привести исследования функций лесозащитных полос, изучение осветления насаждений, влияния разных доз удобрений, вносимых под сельскохозяйственные культуры и т.д. Широко известен метод изучения конкурентных взаимоотношений деревьев в лесу путем ограничения определенной площади (площади питания).

Большое значение при проведении экологических исследований имеют химические и физиологические методы, т.к. они позволяют выявить роль разных компонентов экосистем, и в первую очередь, самого главного – фитоценоза, в аккумуляции и превращении вещества и энергии. Химические методы позволяют установить особенности накопления химических элементов в растениях и в целом в сообществах, особенности круговорота питания. С помощью физиологических методов можно в полевых условиях проследить физиологические процессы (фотосинтез и транспирация).

Так как все биосистемы обладают способностью к саморегуляции, т.е. к восстановлению экологического равновесия, а законы их развития имеют причинно-следственную связь, то в экологических исследованиях широкое распространение получили математические методы (математическая статистика, методы теории информации и кибернетики, теории чисел, дифференциальные и интегральные исчисления и др.) и на основе этих методов – моделирование. Моделирование биологических явлений, т.е. воспроизведение в искусственных системах процессов свойственных живой природе, получило широкое распространение в современной экологии.

Модели подразделяются на реальные (аналоговые) и знаковые.

Примеры аналоговых моделей – аппараты искусственного кровообращения, искусственная почка, протезы рук, управляемые биотоками. Аквариумы и океанариумы модели разных водоемов, теплицы – модели экосистем соответствующих природных зон.

Знаковые модели представляют собой отображение оригинала с помощью математических выражений или подробного описания и, в свою очередь, делятся на концептуальные и математические. Первые могут быть представлены текстом, схемами, научными таблицами, графиками и т.д., а вторые – формулами, уравнениями. Математические модели, особенно при наличии количественных характеристик, являются более эффективным методом изучения экосистем. Математические символы позволяют сжато описать сложные экосистемы, а уравнения дают возможность формально выразить взаимодействия различных компонентов экосистем.

Пример простейшего дифференциального уравнения, описывающего рост популяции какого-либо вида на какой-нибудь стадии ее развития (Радкевич, 1997):

dx/dt=rx,

где x – плотность популяции в момент времени t, r – скорость роста в период времени, соответствующий rt. Решением этого уравнения является функция

x=x0ert

Процесс перевода физических или биологических представлений о любой экосистеме в математические формулы и операции над ними называются системным анализом.В современной экологии реальные и знаковые модели используются параллельно, дополняя друг друга. При отсутствии реальных моделей математический подход получается отвлеченным, а при исключении математического подхода бывает трудно уловить смысл реальной модели.

Экологический мониторинг – один из главных методов изучения динамики экосистем (биогеоценозов), происходящей под воздействием естественных и антропогенных факторов. Под мониторингом понимается специальное длительное слежение за состоянием одних и тех же экосистем. Подобные исследования сопряжены с большими время- и трудозатратами, так как предусматривают детальное описание и изучение всех компонентов, составляющих биогеоценоз, и потому возможны лишь при организации стационарных работ с закладкой как временных, так и постоянных пробных площадей. Мониторинг растительного покрова должен проводиться на разных уровнях в соответствии с хорологической (пространственной) дифференциацией биосферных систем. С помощью одной пробной площади размером 1 га проводить мониторинг растительного покрова невозможно. Для равнинного геоботанического района (заповедника) необходимо заложить не менее 10-12 постоянных пробных площадей размером 1 га, а для горного района - не менее 30-40. Именно к такому выводу пришло большинство исследователей, работавших в разных регионах северной Евразии.

К сожалению, изучение процессов, а именно изучение трансформации сложных многокомпонентных систем, какими являются экосистемы и растительные сообщества – это следующий этап развития экологии. Пока что наибольшее развитие получил мониторинг растительного покрова (ботанический), но и он еще находится в начальной стадии.

Наши рекомендации