Роль воды в жизни растений. Молекулярная структура и физические свойства воды

Для нормальной физиологической деят-ти клетка растения должна быть полностью насыщена водой (или близка к насыщению). В жизни клетки вода имеет значение для поддержания структуры цитоплазмы путем гидратации ее коллоидов и тургорного состояния. Кроме этого, вода необходима как среда для протекания обмена веществ, так как биохимические реакции возможны только между веществами, находящимися в растворенном состоянии. Вода является средой для переноса веществ, т.к. он происходит также только в растворенном состоянии. Вода служит регулятором t° тела раст., т. е. защищает его от быстрого охлаждения или перегревания. Растения относятся к пойкилотермным организмам, не имеющим постоянной t° тела, которая значительно зависит от t° среды, но в некоторой степени она может регулироваться водой. Этому способствуют такие, свойства воды, как теплоемкость и теплота парообразования. Теплоемкость воды, в сравнении со многими веществами, особенно металлами, очень высока. При нагревании она поглощает много тепла, а при охлаждении выделяет большое его количество. Это приводит к смягчению колебания t° тела растения при изменении t° среды. Также очень высока у воды теплота парообразования. Это приводит к тому, что при ее испарении затрачивается много тепла, которое выделяется органами растения, что вызывает значительное понижение их t°.

Физ. Свойства. Плотность воды определяется отношением ее массы к объему при определенной температуре. За единицу плотности воды принята плотность дистиллированной воды при температуре 4°С. Плотность воды зависит от температуры, количества растворенных в ней солей, газов и взвешенных частиц и изменяется от 1 до 1,4 г/см3. Благодаря сильному притяжению между молекулами у воды высокие температуры плавления (0° С) и кипения (100° С). Плотность воды в твердом состоянии меньше, чем в жидком. Следовательно, лед образуется на поверхности водоемов и не опускается на дно. Очень малая теплопроводность. При понижении температуры и давления понижается и теплопроводность. С понижением температуры и понижением плотности уменьшается теплопроводность. Поэтому происходит медленный нагрев и охлаждение водной массы. Проявляется это свойство в том, что снег предохраняет почву от промерзания, а лед - водоемы от промерзания.

Формула воды - Н2О (предложена в 1805 г Гумбольдтом и Гей-Люсаком), т.е. состоит из 1 атома кислорода и 2-х атомов водорода.

1). Молекула воды асимметрична, образует равнобедренный треугольник.

2). Молекула воды обладает полярностью, поэтому является электрическим диполем.

3). Молекулярная структура воды: вода находится в трех состояниях и осуществляет фазовые переходы.

2. Поступление воды в растительную клетку. Осмотическое давление и его значение в поглощении воды клеткой. Методы определения осмотического давления

Поглощение воды из внешней среды обязательное условие существования любого организма. Вода может поступать в клетку растений благодаря набуханию биоколлоидов, увеличивая степень их гидратации. Такое поступление воды характерно для сухих семян помещенных в воду. Однако главный способ поступления воды в живые клетки является ее осмотическое поглощение.

Осмосом называется прохождение растворителя в раствор, отделенный от него полунепроницаемой мембраной(т.е. пропускающей растворитель, но не молекулы растворенных веществ).

Природу осмоса стали изучать в 1826 году, когда фран. Физиолог Г.Дютроше сконструировал первый осмометр: пузырь из полупроницаемой пленки(пергамент, животный пузырь) с помещенной в него стеклянной трубочки заполнялся раствором сахара или другого орг. В-ва. После погружения пузыря в чистую водй наблюдался подъем уровня жидкости в трубке. Однако применявшееся пленка не были абсолютно полупроницаемыми и медленно проникавший сахар мешал количественному измерению осмотического давления.

В. Пфеффер изготовил «искусственную камеру». Основой ее служил пористый фарфоровый сосуд. Во внутреннюю полость наливался раствор желтой кровяной соли и сосуд помещался в раствор CuSO4. При взаимодействие этих веществ в порах фарфора образовывалось гелеобразная масса железистосинеродистой меди

Поступление воды в такого рода осмотическую ячейку приводит к увеличению объема жидкости и поднятию ее уровня в манометрической трубке до тех пор пока гидростатическое давление столба жидкости не повысится настолько, чтобы препятствовать дальнейшему увеличению объема раствора. В достигнутом состоянии равновесия полупроницаемая мембрана в 1 времени пропускает одинаковое количество воды в обоих направлениях. Гидростатическое давление в этом случае соответствует потенциальному осмотическому давлению П*

Вант-Гофф: для разбавленных растворов осмотическое давление при постоянной температуре определяется концентрацией частиц (молекул, ионов) растворенного вещества (числом их в 1 объема раствора). Потенциальное осмотическое давление выражается в Паскалях и отражает максимально возможное давление, которое имеет раствор данной концентрации, или максимальную способность раствора в ячейке поглощать воду.

П*= i*c*RT, где c-концентрация раствора в молях, T-абсолютная t, R-газовая постоянная, i-изотонический коэффициент, равный 1+α(n-1), где α-степень электролитической диссоциации, n-число ионов, на которые распадается молекула электролита

Значение осмотического давления в поглощении воды: от осмот давления зависит сосущая сила клетки, достигая у семян при 6%-ной окружающей влажности величины 4,0510Па(400Атм), что обеспечивает необходимое для прорастания поглощеия воды даже из сравнительно сухой почвы.

Осмотическое давление можно определить благодаря фотометрическому методу.

3. Термодинамические показатели водного режима: активность воды, химический и водный потенциалы. Методы определения водного потенциала.

Энергетический уровень молекул данного вещества, который выражается в скорости их диффузии наз-ют химическим потенциалом этого вещества(ψ). Хим потенциал чистой воды называют водным потенциалом. (ψh2o) Он характеризует способность воды диффундировать, испаряться или поглощаться и выражается в Паскалях. Наивысшая величина водного потенциала – у хим. Чистой воды, эта величина принята за нуль. Поэтому водный потенциал любого раствора и биологической жидкости имеет отрицательное значение. Водный потенциал складывается из осмотического потенциала ψs, потенциала давления ψp, гравитационного потенциала ψg, потенциала набухания биоколлоидов.

Для оценки степени участия воды в различных химических, биохимических и микробиологических реакциях широко применяют показатель активность воды aw, определяемый как отношение парциального давления паров воды над продуктом к парциальному давлению пара над чистой водой. Показатель «активность воды» был предложен У. Скоттом в 1953 г. и в настоящее время широко применяется на практике.

Методы определения водного потенциала: Метод Шардакова основан на подборе раствора, удельный вес, а соответственно и концентрация которого не изменяется после пребывания в нем растительных тканей в течении 20 минут. В этом случае величина осмотического потенциала раствора равна по модулю потенциалу растения.

4. Сосущая сила клетки и водный потенциал. Методы определения сосущей силы

Так как мембрана избирательно проницаема и вода проходит через нее значительно легче, чем вещества, растворенные в клеточном соке и цитоплазме, при помещении клетки в воду, то по законам осмоса она будет поступать внутрь клетки.

Силу с которой вода входит в клетку, называют сосущей силой S. Она тождественна водному потенциалу клетки(ψh2o). Величина сосущей силы определяется осмотическим давлением П* клеточного сока и тургорным (гидростатическим) давлением в клетке(Р), которое равно противодавлению клеточной стенки, возникающему при ее эластическом растяжении. S=П*-Р

При замене этих обозначений соответствующими термодинамическими величинами уравнение приобретает следующий вид: -ψh2o=-ψп-ψр

В условиях разной оводненности соотношения между всеми компонентами этого уравнения меняются. Когда клетка полностью насыщена водой(полностью тургесцентна), ее сосущая сила равна нулю, а тургорное давление равно потенциальному осмотическому: S=0, П*=Р. Состояние полного тургора наблюдается в клетке при достаточной влажности почвы и воздуха. Если подача воды к клетке уменьшается (при усилении ветра, при недостатке влаги в почве и т.д.), то вначале возникает водный дефицит в клеточной стенке, водный потенциал которых становится ниже, чем в вакуолях, и вода начинает перемещаться в клеточные стенки. Отток воды из вакуолей снижает тургорное давление в клетке и следовательно увеличивает их сосущую силу. При длительном недостатке влаги большинство клеток теряет тургор и растение повядает. В этих условиях Р=0, S=П*. Метод определения сосущей силы: Определение методом полосок (по Лилиенштерн) Принцип метода основан на подборе такой концентрации наружного раствора, при которой погруженные в раствор полоски растительной ткани не меняют своей длины, так как в поступлении воды наступает динамическое равновесие и объем клеток остается неизменным. При более высокой концентрации раствора длина полосок уменьшается. Если осмотическое давление меньше величины сосущей силы клетки, то клетка всасывает воду из раствора, увеличивается в объеме и длина полосок становится больше.

5. Состояние воды в растворах. Взаимодействие воды и биополимеров (белков), гидратация. Формы воды в клетке- свободная и связанная вода, их физиологическая роль

В электрическом поле катиона все ближайшие молекулы воды ориентируются отрицательными полюсами внутрь, а вокруг аниона внутрь направлены положительные полюсы молекулы воды. Этот внутренний, прочно связанный с ионами слой молекул воды называют первичной или ближней гидратацией. В процессе электрофореза он движется вместе с ионом как одно целое. Однако, ион связывая определенное число молекул воды из своего непосредственного окружения, в результате ион-дипольного взаимодействия ориентирует также более далеко расположенные диполи воды. Эту гидратацию называют вторичной(дальней).

В растворах содержащих ионы структура воды существенно меняется. В разбавленных растворах (<0,1моль/л) это происходит благодаря заряженным ионам. Маленькие ионы с большей плотностью заряда сильнее действуют на структуру чистой воды по сравнению с большими ионами, имеющими малую плотность заряда, и те и другие разрушают структуру воды: первые притягивают молекулы воды, вторые при внедрении в воду из-за большого размера разрушают льдоподобный каркас. При этом может меняться вязкость водного раствора: структура, создаваемая слабогидратированными большими ионами(с малым зарядом) делает вязкость раствора ниже вязкости чистой воды(Li, Na, Mg,F), а более плотная структура, образуемая гидратированными ионами, обусловливает более высокую вязкость, чем в чистой воде(K, Rb, Cl, OH, NO3)

В белках гидратация обусловлена взаимодействиями молекул воды с гидрофильными (ионными и электронейтральными) и гидрофобными (неполярными) группами и ее иммобилизацией в замкнутых пространствах внутри макромолекул при их конформационных перестройках. При ионной гидратации(взаимодействие с -NH3, -СОО группами) и электронейтральной(с -СООН, -ОН, -СО, -NH) молекулы воды электростатически связываются и образуется мономолекулярный слой первичной гидратации. Число ионнизированных групп в белке зависит от рН среды. Наименее гидратирован белок в его изоэлектрической точке, при которой отмечается также самая низкая растворимость белков.

Иммобилизованная вода, оказавшаяся замкнутой внутри макромолекул, может участвовать в образовании слоя первичной гидратации, а остальная ее часть сохраняет свойства обычной воды, но с ограниченной подвижностью

Свободная вода легко передвигается по растению и испаряется. Она находится в основном в межклетниках, т. е. в свободном пространстве. Связанная вода испаряется и передвигается с трудом. Она находится преимущественно внутри клетки — в цитоплазме и вакуоли. Разделяется на осмотически и коллоидно связанную. Первая соединена с растворенными в ней веществами и находится в вакуоли. Эта связь не очень прочная, и осмотически связанная вода может выходить из клетки, например, при плазмолизе. Свойства коллоидно связанной воды обусловлены наличием белков — коллоидов цитоплазмы, где она и находится. Такая связь большей частью очень прочная, и коллоидно связанная вода выходит из клетки только при очень сильном обезвоживании (продол. засухе).

Наши рекомендации