Тема 4. основное уравнение вращательного движения. закон сохранения момента импульса

4.1 Динамика вращательного движения

Момент инерции материальной точки относительно оси вращения: J = mr2, где m –масса, r –расстояние до оси вращения. Момент инерции системы материальных точек (тела): J = тема 4. основное уравнение вращательного движения. закон сохранения момента импульса - student2.ru , где ri – расстояние i–й материальной точки массой m до оси вращения. В случае непрерывного распределения масс: J = тема 4. основное уравнение вращательного движения. закон сохранения момента импульса - student2.ru . Теорема Штейнера: момент инерции тела массой m относительно неподвижной оси вращения, не проходящей через центр масс и параллельный оси вращения: J = Jz + mr2, где Jz –момент инерции тела относительно оси z, проходящей через центр масс, r - расстояние между осями.

4.2. Момент инерции тел правильной геометрической формы относительно неподвижной оси вращения

Форма тела Ось вращения проходит через: Момент инерции
Однородный шар радиусом R и массой m центр масс 0,4mR2
Круглый однородный цилиндр или диск радиусом R и массой m центр масс перпендикулярно плоскости основания 0,5mR2
Тонкий обруч или кольцо радиусом R и массой m центр масс перпендикулярно плоскости обруча mR2
Однородный тонкий стержень длиной L и массой m центр масс стержня перпендикулярно стержню mL2/12
Однородный тонкий стержень длиной L и массой m конец стержня перпендикулярно стержню mL2/3

4.3 Момент силы, момент импульса. Основное уравнение динамики вращательного движения

Момент силы относитeльно произвольной точки: тема 4. основное уравнение вращательного движения. закон сохранения момента импульса - student2.ru тема 4. основное уравнение вращательного движения. закон сохранения момента импульса - student2.ru где тема 4. основное уравнение вращательного движения. закон сохранения момента импульса - student2.ru – радиус-вектор, проведенный из этой точки в точку приложения силы тема 4. основное уравнение вращательного движения. закон сохранения момента импульса - student2.ru . Модуль момента силы: M = Fl, где l = r.sin α – плечо силы (кратчайшее расстояние между линией действия силы и осью вращения)
Момент импульса твердого тела относительно оси вращения: тема 4. основное уравнение вращательного движения. закон сохранения момента импульса - student2.ru тема 4. основное уравнение вращательного движения. закон сохранения момента импульса - student2.ru где тема 4. основное уравнение вращательного движения. закон сохранения момента импульса - student2.ru –радиус-вектор отдельной i - й частицы; mi тема 4. основное уравнение вращательного движения. закон сохранения момента импульса - student2.ru - импульс этой частицы; J- момент инерции тела относительно оси; тема 4. основное уравнение вращательного движения. закон сохранения момента импульса - student2.ru– угловая скорость
Основное уравнение (закон) динамики вращательного движения твердого тела относительно неподвижной оси: тема 4. основное уравнение вращательного движения. закон сохранения момента импульса - student2.ru тема 4. основное уравнение вращательного движения. закон сохранения момента импульса - student2.ru где ε – угловое ускорение; Jz-момент инерции тела относительно оси
Закон сохранения момента импульса для замкнутой системы тема 4. основное уравнение вращательного движения. закон сохранения момента импульса - student2.ru
Работа при вращении тела: ΔA = MzΔφ где Δφ - угол поворота тела; Mz - момент силы относительно оси
Кинетическая энергия тела, вращающегося вокруг неподвижной оси: тема 4. основное уравнение вращательного движения. закон сохранения момента импульса - student2.ru где J– момент инерции тела относительно оси, ω - угловая скорость Кинетическая энергия тела, катящегося по плоскости без скольжения: тема 4. основное уравнение вращательного движения. закон сохранения момента импульса - student2.ru где m– масса тела; vc - скорость центра масс тела; J – момент инерции тела относительно оси, проходящей через центр масс; ω –угловая скорость тела


Пример 7.Маховик, массу которого m = 5 кг можно считать распределенной по ободу радиуса r = 20 см, свободно вращается вокруг горизонтальной оси, проходящей через его центр с частотой n = 720 мин-1. При торможении маховик останавливается через Δt = 20 с. Определить тормозящий момент М и число оборотов N, которое сделает маховик до полной остановки.

Условие:

m = 5 кг

r = 20см =0,20 м

n =720 мин-1 = 12 с-1

Δt =20 с

М - ? N - ?

Решение. Если тормозящий момент постоянен, то движение маховика равнозамедленное, и основное уравнение динамики вращательного движения можно записать в виде:

тема 4. основное уравнение вращательного движения. закон сохранения момента импульса - student2.ru (1)

где тема 4. основное уравнение вращательного движения. закон сохранения момента импульса - student2.ru - изменение угловой скорости за интервал времени ∆t; М – искомый тормозящий момент.

Число оборотов N может быть найдено как кинематически, так и по изменению кинетической энергии, равному работе совершаемой тормозящей силой.

Векторному уравнению (1) соответствует скалярное уравнение

J∆ω = M∆t, (2)

где ∆ω, M - модули соответствующих векторов.

Из условия задачи следует, что

∆ω = |ω – ω0|= ω0 =2πn (3)

Поскольку масса маховика распределена по ободу, момент инерции

J = mr2 (4)

Подставляя выражения (2), (3) в (1) получим

mr22πn = M∆t.

Откуда M = 2πnmr2/Δt = 0,75 H.м.

Векторы тема 4. основное уравнение вращательного движения. закон сохранения момента импульса - student2.ru направлены в сторону противоположную вектору тема 4. основное уравнение вращательного движения. закон сохранения момента импульса - student2.ru .

Угловое перемещение, пройденное маховиком до остановки

φ = ω0∆t – ε∆t2/2. (5)

Учитывая, что ω = ωo - ε∆t = 0 преобразуем выражение (6)

φ = ω0∆t/2.

Так как φ = 2πN, ω =2πn, где N - число оборотов, которое делает маховик до полной остановки, окончательно получим

N = nt/2 = 120 об.

ТЕМА 5. МЕХАНИЧЕСКАЯ РАБОТА. МОЩНОСТЬ.

ЗАКОНЫ СОХРАНЕНИЯ ПРИ ПОСТУПАТЕЛЬНОМ ДВИЖЕНИИ

5.1 Закон сохранения импульса. Механическая работа, мощность, КПД.

Кинетическая и потенциальная энергия

Закон сохранения импульса для замкнутой системы: тема 4. основное уравнение вращательного движения. закон сохранения момента импульса - student2.ru тема 4. основное уравнение вращательного движения. закон сохранения момента импульса - student2.ru где n - число материальных точек (или тел), входящих в систему.
Элементарная работа, совершаемая постоянной силой: δA= тема 4. основное уравнение вращательного движения. закон сохранения момента импульса - student2.ru δA = Frdr = Fdrcos α, где Fr -проекция силы на направление перемещения dr; α – угол между направлением силы и перемещения.
Работа, совершаемая переменной силой на пути: A = тема 4. основное уравнение вращательного движения. закон сохранения момента импульса - student2.ru Работа силы тяжести вблизи поверхности Земли: A =mgh; Работа силы упругости: A =kx2/2. Работа силы трения: A = - Ft Δr. Мгновенная мощность: тема 4. основное уравнение вращательного движения. закон сохранения момента импульса - student2.ru N =Fv =Frv = Fvcos α Коэффициент полезного действия (КПД): тема 4. основное уравнение вращательного движения. закон сохранения момента импульса - student2.ru An, A3, Nn, N3 – соответственно полезные и затраченные работа и мощность
Кинетическая энергия: тема 4. основное уравнение вращательного движения. закон сохранения момента импульса - student2.ru
Связь между консервативной силой, действующей на тело в данной точке, и потенциальной энергией частицы: тема 4. основное уравнение вращательного движения. закон сохранения момента импульса - student2.ru тема 4. основное уравнение вращательного движения. закон сохранения момента импульса - student2.ru = - grad Wп ; Потенциальная энергия частицы в поле центральных сил: Wп(r) = ΔA = - тема 4. основное уравнение вращательного движения. закон сохранения момента импульса - student2.ru , предположив Wп(∞) = 0, получим Wп(r) = тема 4. основное уравнение вращательного движения. закон сохранения момента импульса - student2.ru . Потенциальная энергия гравитационного взаимодействия двух материальных точек массами m1 и m2, находящихся на расстоянии r: тема 4. основное уравнение вращательного движения. закон сохранения момента импульса - student2.ru Потенциальная энергия тела в поле силы тяжести Земли: тема 4. основное уравнение вращательного движения. закон сохранения момента импульса - student2.ru где r = R +h - расстояние от центра Земли до центра масс тела. Потенциальная энергия тела в однородном поле силы тяжести (h<<R): Wп = mgh, где g – ускорение свободного падения. Потенциальная энергия упруго деформированного тела: тема 4. основное уравнение вращательного движения. закон сохранения момента импульса - student2.ru где k - коэффициент жесткости, x – смещение; σ – нормальное напряжение; E – модуль Юнга; V – объем.

Пример 8.Автомобиль массой m = 2000 кг движется вверх по наклонной плоскости с уклоном α = 0,1, развивая на пути S = 100 м скорость vк = 36 км/ч. Коэффициент трения μ = 0,05. Найти среднюю и максимальную мощность двигателя автомобиля при разгоне.

тема 4. основное уравнение вращательного движения. закон сохранения момента импульса - student2.ru Условие:

m =2000 кг;

S=100 м;

a=0,1 м/с2;

μ=0,05;

v0 =0;

vк =36км/ч = 10м/с;

Рср - ? Рmax - ?

Решение. Автомобиль движется равноускоренно, причем начальная скорость равна нулю. Выберем ось х, расположенную вдоль наклонной плоскости, ось у – перпендикулярно ей (рис. 3).

На автомобиль действует четыре силы: сила тяжести FТ=mg, сила реакции опоры N, сила тяги F и сила трения FТР. Запишем основной закон динамики:

тема 4. основное уравнение вращательного движения. закон сохранения момента импульса - student2.ru .

Это уравнение в проекциях на оси координат

на ось х ma = F – mg sina - FTP,

на ось у 0 = N – mg cosa,

FTP = μ N.

Выразим из этих уравнений силу тяги F

F = mg sina + μmg cosa + ma.

Ускорение на этом участке равно:

a = (vk 2 - v02)/(2s) = vk2/(2s).

Найдем силу тяги двигателя на этом участке:

F = mg sinα + μmgcosα + тема 4. основное уравнение вращательного движения. закон сохранения момента импульса - student2.ru = m(gsinα + μgcosα + тема 4. основное уравнение вращательного движения. закон сохранения момента импульса - student2.ru )

Работа двигателя на этом участке: A = Fscosα,

где α – угол между F и s, равный нулю.

Подставив сюда выражение для F, получим

А = m(gsinα + μgcosα + тема 4. основное уравнение вращательного движения. закон сохранения момента импульса - student2.ru )s

Средняя мощность равна PCP = тема 4. основное уравнение вращательного движения. закон сохранения момента импульса - student2.ru , где тема 4. основное уравнение вращательного движения. закон сохранения момента импульса - student2.ru тема 4. основное уравнение вращательного движения. закон сохранения момента импульса - student2.ru , откуда

тема 4. основное уравнение вращательного движения. закон сохранения момента импульса - student2.ru

Максимальная мощность автомобиля достигается в тот момент, когда скорость максимальна: Pmax = F·vk,

Pср = 27·104 Вт, Pmax = 47·104 Вт.

Наши рекомендации