Специфические свойства пространства и времени

Пространство и время имеют не только общие характеристики, но и специфические свойства, которые относятся только к пространству или только ко времени, что позволяет рассматривать их как разные атрибуты материи.
Наряду с такими свойствами, как прерывность и непрерывность, противоречивость, к наиболее общим свойствам пространства и времени относят:
- структурность;
- протяженность;
- трехмерность пространства;
- одномерность, однонаправленность и необратимость времени.
Мнение об универсальности таких свойств пространства и времени, как прерывность и непрерывность, трехмерность пространства, не может быть обосновано логически, хотя принципиально предположение об универсальности этих свойств не противоречит принципам диалектического материализма.
Однако условия изучения пространства и времени иные, чем других понятий, так как нам знаком только единственный вид пространства — пространство трех измерений, в котором протекает наша жизнь, существуют наше тело, наша Земля, наша звездная система. Чем ограничено наше пространство и время и каков характер этого ограничения — на этот вопрос пока нет материала для ответа. Проблема была бы намного проще, если бы существовала только одна форма пространства и времени, как предполагали представители механистического материализма. Но диалектический подход к рассмотрению пространства и времени, основанный на достижениях современного естествознания, заставляет сомневаться в правильности такого взгляда и приводит к гипотезе существования многих форм пространства и времени. В этих условиях определение общих свойств пространства и времени превращается в сложную проблему.

19. Положения теории относительности А. Эйнштейна

1) скорость света в пустом пространстве всегда постоянна и, как это ни странно кажется на первый взгляд, независима от движения источника света или приемника света. Это положение доказано опытом Майкельсона;2) если две системы координат движутся друг относительно друга прямолинейно и равномерно, т. е., говоря языком классической механики, системы являются инерциальными, то все законы природы будут для них одинаковыми. Это положение следует из принципа относительности Галилея. При этом сколько бы ни было таких систем (две или гораздо большее число), отсутствует возможность определить, в которой из них скорость может рассматриваться как абсолютная;3) в соответствии с классической механикой скорости иперцианых систем могут преобразовываться одна относительно другой, т. е., зная скорость тела (материальной точки) в одной инерциальной системе, можно определить скорость этого тела в другой инерциальной системе, причем значения скоростей данного тела в различных ииерциальных системах координат получатся различными.Очевидно, что положение третье противоречит положению первому, согласно которому, повторяем, свет имеет постоянную скорость независимо от движения источника или приемника света, т. е. независимо от того, е каких инерциальных системах координат ведется отсчет.Это противоречие было разрешено с помощью теории относительности - физической теории, основные закономерности которой были установлены А. Эйнштейном и 1905 г. (частная, или специальная, теория относительности) и в 1916 г. (общая теория относительности).

20. Термодинамика, три начала термодинамики

Термодинамика. Общее понятие

Начала термодинамики - совокупность постулатов, лежащих в основе термодинамики. Эти положения были установлены в результате научных исследований и были доказаны экспериментально. В качестве постулатов они принимаются для того, чтобы термодинамику можно было построить аксиоматически.

Необходимость начал термодинамики связана с тем, что термодинамика описывает макроскопические параметры систем без конкретных предположений относительно их микроскопического устройства. Вопросами внутреннего устройства занимается статистическая физика.

Начала термодинамики независимы, то есть ни одно из них не может быть выведено из других начал.

Перечень начал термодинамики

· Первое начало термодинамики представляет собой закон сохранения энергии в применении к термодинамическим системам.

· Второе начало термодинамики накладывает ограничения на направление термодинамических процессов, запрещая самопроизвольную передачу тепла от менее нагретых тел к более нагретым. Также формулируется как закон возрастания энтропии.

· Третье начало термодинамики говорит о том, как энтропия ведет себя вблизи абсолютного нуля температур.

· Нулевым (или общим) началом термодинамики иногда называют принцип, согласно которому замкнутая система независимо от начального состояния в конце концов приходит к состоянию термодинамического равновесия и самостоятельно выйти из него не может.

Уравнения состояния. При анализе термодинамических систем, помимо начал термодинамики, требуются уравнения состояния системы. Так же, как и начала, уравнения состояния не содержатся в термодинамике и должны быть взяты из опыта или из статистической физики. В отличие от начал термодинамики, уравнения состояния не носят всеобъемлющего характера, а применимы для конкретных термодинамических систем.

Наши рекомендации