Магнитные моменты электронов и атомов

Рассматривая действие магнитного поля на проводники с током и на движущиеся заряды, мы не интересовались процесса­ми, происходящими в веществе. Свойства среды учитывались формально с помощью магнитной проницаемости m. Для того что­бы разобраться в магнитных свойствах сред и их влиянии на магнитную индук­цию, необходимо рассмотреть действие магнитного поля на атомы и молекулы вещества.

Опыт показывает, что все вещества, помещенные в магнитное поле, намагничи­ваются. Рассмотрим причину этого явле­ния с точки зрения строения атомов и мо­лекул, положив в основу гипотезу Ампера (см. § 109), согласно которой в любом теле существуют микроскопические токи,

обусловленные движением электронов в атомах и молекулах.

Для качественного объяснения маг­нитных явлений с достаточным приближе­нием можно считать, что электрон движет­ся в атоме по круговым орбитам. Элек­трон, движущийся по одной из таких орбит, эквивалентен круговому току, по­этому он обладает орбитальным магнит­ным моментом(см. (109.2)) pm = ISn, мо­дуль которого

pm=IS=evS, (131.1)

Магнитные моменты электронов и атомов - student2.ru где I = ev — сила тока, v — частота вра­щения электрона по орбите, S — площадь орбиты. Если электрон движется по часо­вой стрелке (рис. 187), то ток направлен против часовой стрелки и вектор рm в со­ответствии с правилом правого винта направлен перпендикулярно плоскости орби­ты электрона.

С другой стороны, движущийся по ор­бите электрон обладает механическим мо­ментом импульса Le, модуль которого, со­гласно (19.1),

Le=mvr=2mvS, (131.2)

где v=2pvr, pr2=S. Вектор Le (его на­правление также подчиняется правилу правого винта), называется орбитальным механическим моментом электрона.

Из рис. 187 следует, что направления рm и Le противоположны, поэтому, учиты­вая выражения (131.1) и (131.2), получим

pm=-(e/2m)Le=gLe, (131.3)

где величина

g=-e/2m (131.4)

называется гиромагнитным отношением орбитальных моментов(общепринято пи­сать со знаком « - », указывающим на то, что направления моментов противополож­ны). Это отношение, определяемое уни­версальными постоянными, одинаково для любой орбиты, хотя для разных орбит значения v и r различны. Формула (131.4) выведена для круговой орбиты, но она справедлива и для эллиптических орбит. Экспериментальное определение гиро­магнитного отношения проведено в опытах Эйнштейна и де Гааза (1915), которые наблюдали поворот свободно подвешенно­го на тончайшей кварцевой нити железно­го стержня при его намагничении во внеш­нем магнитном поле (по обмотке соленои­да пропускался переменный ток с часто-

той, равной частоте крутильных колебаний стержня). При исследовании вынужден­ных крутильных колебаний стержня опре­делялось гиромагнитное отношение, кото­рое оказалось равным — (е/т). Таким об­разом, знак носителей, обусловливающих молекулярные токи, совпадал со знаком заряда электрона, а гиромагнитное отно­шение оказалось в два раза большим, чем введенная ранее величина g (см. (131.4)). Для объяснения этого результата, имев­шего большое значение для дальнейшего развития физики, было предположено, а впоследствии доказано, что кроме орби­тальных моментов (см. (131.1) и (131.2)) электрон обладает собственным механиче­ским моментом импульса Les, называемым спином.Считалось, что спин обусловлен вращением электрона вокруг своей оси, что привело к целому ряду противоречий. В настоящее время установлено, что спин является неотъемлемым свойством элек­трона, подобно его заряду и массе. Спину электрона Les соответствует собственный (спиновый) магнитный момент pms, про­порциональный Les и направленный в про­тивоположную сторону:

pms=gsLes. (131.5)

Величина gs называется гиромагнитным отношением спиновых моментов.

Проекция собственного магнитного момента на направление вектора В может принимать только одно из следующих двух значений:

Магнитные моменты электронов и атомов - student2.ru

где h=h/(2p) (h — постоянная Планка), mв — магнетон Бора,являющийся едини­цей магнитного момента электрона.

В общем случае магнитный момент электрона складывается из орбитального и спинового магнитных моментов. Магнит­ный момент атома, следовательно, склады­вается из магнитных моментов входящих в его состав электронов и магнитного мо­мента ядра (обусловлен магнитными мо­ментами входящих в ядро протонов и ней­тронов). Однако магнитные моменты ядер в тысячи раз меньше магнитных моментов электронов, поэтому ими пренебрегают.

Таким образом, общий магнитный момент атома (молекулы) ра равен векторной сум­ме магнитных моментов (орбитальных и спиновых) входящих в атом (молекулу) электронов:

pа=Sрm+Sрms. (131.6)

Еще раз обратим внимание на то, что при рассмотрении магнитных моментов электронов и атомов мы пользовались классической теорией, не учитывая огра­ничений, накладываемых на движение электронов законами квантовой механики. Однако это не противоречит полученным результатам, так как для дальнейшего объяснения намагничивания веществ су­щественно лишь то, что атомы обладает магнитными моментами.

Диа- и парамагнетизм

Всякое вещество является магнетиком,т. е. оно способно под действием магнитно­го поля приобретать магнитный момент (намагничиваться). Для понимания меха­низма этого явления необходимо рассмот­реть действие магнитного поля на движу­щиеся в атоме электроны.

Ради простоты предположим, что элек­трон в атоме движется по круговой орби­те. Если орбита электрона ориентирована относительно вектора В произвольным об­разом, составляя с ним угол а (рис. 188), то можно доказать, что она приходит в та­кое движение вокруг В, при котором век­тор магнитного момента рm, сохраняя по­стоянным угол а, вращается вокруг на Магнитные моменты электронов и атомов - student2.ru правления В с некоторой угловой скоро­стью. Такое движение в механике на­зывается прецессией.Прецессию вокруг вертикальной оси, проходящей через точку опоры, совершает, например, диск волчка при замедлении движения.

Таким образом, электронные орбиты атома под действием внешнего магнитного поля совершают прецессионное движе­ние, которое эквивалентно круговому то­ку. Так как этот микроток индуцирован внешним магнитным полем, то, согласно правилу Ленца, у атома появляется со­ставляющая магнитного поля, направлен­ная противоположно внешнему полю. На­веденные составляющие магнитных полей атомов (молекул) складываются и обра­зуют собственное магнитное поле вещест­ва, ослабляющее внешнее магнитное по­ле. Этот эффект получил название диа­магнитного эффекта,а вещества, на­магничивающиеся во внешнем магнитном поле против направления поля, называют­ся диамагнетиками.

В отсутствие внешнего магнитного по­ля диамагнетик немагнитен, поскольку в данном случае магнитные моменты элек­тронов взаимно компенсируются, и сум­марный магнитный момент атома (он ра­вен векторной сумме магнитных моментов (орбитальных и спиновых) составляющих атом электронов) равен нулю. К диамагнетикам относятся многие металлы (на­пример, Bi, Ag, Au, Cu), большинство органических соединений, смолы, углерод и т. д.

Так как диамагнитный эффект обус­ловлен действием внешнего магнитного поля на электроны атомов вещества, то диамагнетизм свойствен всем веществам. Однако наряду с диамагнитными ве­ществами существуют и парамагнитные— вещества, намагничивающиеся во внеш­нем магнитном поле по направлению поля.

У парамагнитных веществ при отсутст­вии внешнего магнитного поля магнитные моменты электронов не компенсируют друг друга, и атомы (молекулы) парамагнети­ков всегда обладают магнитным момен­том. Однако вследствие теплового движе­ния молекул их магнитные моменты ори­ентированы беспорядочно, поэтому парамагнитные вещества магнитными свой­ствами не обладают. При внесении пара­магнетика во внешнее магнитное поле устанавливается преимущественная ори­ентация магнитных моментов атомов по полю (полной ориентации препятствует тепловое движение атомов). Таким обра­зом, парамагнетик намагничивается, со­здавая собственное магнитное поле, со­впадающее по направлению с внешним полем и усиливающее его. Этот эффектназывается парамагнитным.При ослабле­нии внешнего магнитного поля до нуля ориентация магнитных моментов вследст­вие теплового движения нарушается и па­рамагнетик размагничивается. К парамаг­нетикам относятся редкоземельные эле­менты, Pt, Al и т. д. Диамагнитный эффект наблюдается и в парамагнетиках, но он значительно слабее парамагнитного и по­этому остается незаметным.

Из рассмотрения явления парамагне­тизма следует, что его объяснение совпа­дает с объяснением ориентационной (дипольной) поляризации диэлектриков с по­лярными молекулами (см. §87), только электрический момент атомов в случае поляризации надо заменить магнитным моментом атомов в случае намагничения.

Подводя итог качественному рассмот­рению диа- и парамагнетизма, еще раз отметим, что атомы всех веществ являют­ся носителями диамагнитных свойств. Ес­ли магнитный момент атомов велик, то парамагнитные свойства преобладают над диамагнитными и вещество является па­рамагнетиком; если магнитный момент атомов мал, то преобладают диамагнит­ные свойства и вещество является диамагнетиком.

Наши рекомендации