Области пространственного заряда
В полупроводнике p-типа концентрация дырок намного превышает концентрацию электронов. В полупроводнике n-типа концентрация электронов намного превышает концентрацию дырок. Если между двумя такими полупроводниками установить контакт, то возникнет диффузионный ток — носители заряда, хаотично двигаясь, перетекают из той области, где их больше, в ту область, где их меньше. При такой диффузии электроны и дырки переносят с собой заряд. Как следствие, область на границе станет заряженной, и область в полупроводнике p-типа, которая примыкает к границе раздела, получит дополнительный отрицательный заряд, приносимый электронами, а пограничная область в полупроводнике n-типа получит положительный заряд, приносимый дырками. Таким образом, граница раздела будет окружена двумя областями пространственного заряда противоположного знака.
Электрическое поле, возникающее вследствие образования областей пространственного заряда, вызывает дрейфовый ток в направлении, противоположном диффузионному току. В конце концов, между диффузионным и дрейфовым токами устанавливается динамическое равновесие и перетекание зарядов прекращается.
Выпрямление
Если приложить внешнее напряжение так, чтобы созданное им электрическое поле было направленным противоположно направлению электрического поля между областями пространственного заряда, то динамическое равновесие нарушается, и диффузионный ток преобладает над дрейфовым током, быстро нарастая с повышением напряжения. Такое подключение напряжения к p-n-переходу называется прямым смещением.
Если же внешнее напряжение приложено так, чтобы созданное им поле было одного направления с полем между областями пространственного заряда, то это приведет лишь к увеличению областей пространственного заряда, и ток через p-n-переход не идёт. Такое подключение напряжения к p-n-переходу называется обратным смещением.
Дио́д — двухэлектродный электронный прибор, обладающий различной проводимостью в зависимости от направления электрического тока. Электрод диода, подключаемый к положительному полюсу источника тока, когда диод открыт (то есть имеет маленькое сопротивление), называют анодом, подключаемый к отрицательному полюсу — катодом.
Диоды бывают электровакуумными (кенотроны), газонаполненными (газотроны, игнитроны, стабилитроны),полупроводниковыми и др. В настоящее время в подавляющем большинстве случаев применяются полупроводниковые диоды.
Диоды | ||||||||||||||||||||||||||
Полупроводниковые | Не полупроводниковые | |||||||||||||||||||||||||
Газозаполненные | Вакуумные | |||||||||||||||||||||||||
Полупроводниковые диоды
Полупроводниковые диоды используют свойство односторонней проводимости p-n перехода — контакта между полупроводниками с разным типом примесной проводимости, либо между полупроводником и металлом (Диод Шоттки).
Ламповые диоды (Электровакуумный диод)
Ламповые диоды представляют собой радиолампу с двумя рабочими электродами, один из которых подогревается нитью накала. Благодаря этому, часть электронов покидает поверхность разогретого электрода (катода) и под действием электрического поля движется к другому электроду — аноду. Если же поле направлено в противоположную сторону, электрическое поле препятствует этим электронам и тока (практически) нет.
На рисунке 1 показано прямое включение диода при котором диод проводит электрический ток, а на рисунке 2 обратное включение диода при котором диод не проводит электрический ток. Так ведет себя диод включенный в цепь постоянного тока. Токи и соответствующие им напряжения называются прямым током (при включении диода в проводящем направлении) и соответствующее ему напряжение - прямое напряжение. При обратном включении токи и напряжения соответственно называются обратным током и обратным напряжением.
Вопрос 7.
Магни́тная инду́кция — векторная величина, являющаяся силовой характеристикой магнитного поля (его действия на заряженные частицы) в данной точке пространства. Определяет, с какойсилой магнитное поле действует на заряд , движущийся со скоростью .
Более конкретно, — это такой вектор, что сила Лоренца , действующая со стороны магнитного поля[1] на заряд , движущийся со скоростью , равна
где косым крестом обозначено векторное произведение, α — угол между векторами скорости и магнитной индукции (направление вектора перпендикулярно им обоим и направлено поправилу буравчика).
Также магнитная индукция может быть определена[2] как отношение максимального механического момента сил, действующих на рамку с током, помещенную в однородное поле, к произведению силы тока в рамке на её площадь.
Является основной фундаментальной характеристикой магнитного поля, аналогичной вектору напряжённости электрического поля.
В системе СГС магнитная индукция поля измеряется в гауссах (Гс), в системе СИ — в теслах (Тл)
1 Тл = 104 Гс
Закон Био-Саввара-Лапласа:
вектор dB индукции магн. поля, создаваемого в вакууме элементом dl проводника
с током силой I, в произвольной точке М поля равен:
где dl - вектор, проведённый в направлении тока в элементе dl проводника, г - радиус-вектор, проведённый в точку М из элемента dl, rрасстояние от dl до М, а. - угол между векторами dl и r, н0 - магнитная постоянная.
Вопрос 8.
§ Сила Ампера — это сила, с которой магнитное поле действует на помещенный в него проводник с током.
модуль силы Ампера равен произведению модуля индукции магнитного поля B, в котором находится проводник с током, длины этого проводника l, силы тока I в нем и синуса угла между направлениями тока и вектора индукции магнитного поля: FA=I⋅B⋅l⋅sinα ,
В частном случае параллельных проводников силы взаимодействия стремятся сблизить проводники, если текущие в них токи параллельны, и удалить их друг от друга, если токи антипараллельны. Таким образом, параллельные токи притягиваются, а антипараллельные - отталкиваются.
Сила Лоренца: Fл = q[V*B]
Движение частицы в однородном магнитном поле: Когда V перпендикулярно B частица движется по кругу. Когда параллельно –частица движется по прямой. Ну и наконец если угол между V и B не равен 0 или 90 градусов, тогда частица движется по спирали
Вопрос 9
Эффе́кт Хо́лла — явление возникновения поперечной разности потенциалов при помещении проводника с постоянным током в магнитное поле.
Поток магнитной индукции - поток вектора магнитной индукции через некоторую поверхность; величина, равная произведению:
- модуля вектора магнитной индукции; на
- площадь поверхности; и на
- косинус угла между вектором магнитной индукции и нормалью к поверхности.
В СИ единицей магнитного потока является вебер.
Явление электромагнитной индукции. Оно говорит о том, что в замкнутом проводящем контуре при изменении потока магнитной индукции, охватываемого этим контуром, возникает электрический ток, получивший название индукционного.
Закон Фарадея: При всяком изменении магнитного потока пронизывающего произвольную замкнутую площадку ограниченную замкнутым контуром в этом контуре возникает ЭДС индукции = скорости изменения магнитного потока взятое с обратным знаком.
E = - dФ/ dt; dФ = B dS;
Правило Ленца – Индукционный ток имеет всегда такое направление чтобы своим действием воспрепятствовать причине вызвавшей его, т.е. он создаёт электромагнитное поле препятствующее изменению магнитного потока.
Самоиндукция - это индукция, возникающая под действием изменяющегося магнитного поля, образованного изменяющимся электрическим полем самого проводника с током. Допустим, у вас есть катушка. Вы подаёте на эту катушку переменное напряжение, в ней возникает переменный ток, этот ток порождает переменное магнитное поле, которое вновь индуцируется на тот же проводник с током, создавая ЭДС самоиндукции, препятствующую изменению тока в этом проводнике.
Электрический ток, который течет в замкнутом контуре, создает вокруг себя магнитное поле, индукция которого, согласно закону Био-Савара-Лапласа, пропорциональна току. Сцепленный с контуром магнитный поток Ф поэтому прямо пропорционален току I в контуре:
(1)
где коэффициент пропорциональности L называется индуктивностью контура.
Вопрос 10.