Свойства лазерного излучения.

Когерентность излучения проявляется практически во всех свойствах оптич. квант. генераторов. Замечательной чертой лазеров является способность к концентрации энергии - конц. во времени , в спектре, в пр-ве, по направлению распределения. Для некоторых квантовых генераторов хар-на очень высокая степень монохроматичности излучения. В других лазерах испускаются очень короткие импульсы, прдолжительностью 10-2с; поэтому мгновенная мощность такого лазера может быть очень большой. Световой пучок, выходящий из лазера обладает высокой направленностью, которая во многих случаях определяется дифр. явлениями. Такое излучение можно сфокусировать на очень малой площади и создать огромную освещенность.

Нелинейная оптика.

Явления преломления и отражения света с молекулярной точки зрения рассматриваются как результат интерференции падающей волны и вторичных волн, испускаемых молекулами среды благодаря вынужденным колебаниям зарядов, индуцированных падающей волной. Если принимать во внимание ангармоничность колебаний зарядов, то индуцированный полем дипольный момент имеет слагаемые, отвечающие колебаниям с частотами, кратными частоте w падающей на среду волны. Поэтому молекулы среды испускают волны и с кратными частотами, и нелинейная среда в целом создаёт излучение с частотами 2w, 3w и т.д. Это явление получило название генерации кратных гармоник света.

Отражение волн в нелинейной оптике.При падении интенсивного излучения на границу раздела двух сред в отражённом свете наблюдаются волны не только с частотой падающего излучения, но и с кратными, разностными и суммарными частотами. Будем говорить о случае падения монохроматической плоской волны с частотой w. Опыт показывает, что направления распространения отраженных волн с частотами w и 2w отличаются друг от друга, причём это отличие зависит от дисперсии показателя преломления среды в которой распространяется падающая волна. Интенсивность второй гармоники в отражённом свете на несколько порядков меньше, чем в преломлённой волне. Как и в случае френелевского отражения, амплитуды отражённых волн с частотой 2w зависят от угла падения и ориентации электрического вектора относительно плоскости падения. Наблюдается и аналог явления Брюстера: при некотором угле падения для пучка с поляризацией, параллельной плоскости падения, коэффициент отражения равен 0. Наблюдения второй гармоники в отражённом свете представляют особый интерес в случае сильно поглощающих сред, например металлов, т.к. позволяют исследовать их взаимодействия с мощным электромагнитным полем.

Самофокусировка.В нелинейной оптике закон прямолинейного распространения света в однородной среде имеет дополнительные ограничения применимости. Пусть показатель преломления зависит от интенсивности света при достаточно больших её значениях. Если освещённость в поперечном сечении пучка неравномерна, то и показатель преломления не будет постоянной величиной, что эквивалентно неоднородности среды. В неоднороднородной же среде лучи не прямолинейны и отклоняются в ту сторону, где показатель преломления больше. На рисунке приведена схема опыта, в котором наблюдается данное явление.

Параллельный пучок света с интенсивностью нарастающей к середине падает на слой К вещества, показатель преломления которой зависит от освещённости. В результате параллельный пучок превращается в сходящийся.

 
  Свойства лазерного излучения. - student2.ru

Это можно обьяснить, если принять зависимость, показателя преломления от амплитуды поля А: n=n0+n2A2 , где n0 – “обычный” показатель преломления, n2A2 – описывает изменение n под влиянием мощного излучения.

Толщина слоя вещества, необходимая для пересечения крайних лучей с осью пучка внутри нелинейной среды

lср Свойства лазерного излучения. - student2.ru , где a – начальный радиус пучка.

Необходимая мощность излучения Свойства лазерного излучения. - student2.ru

Оптимальное значение радиуса пучка можно оценить на основании следующих соображений. Нелинейность среды уменьшает радиус пучка от а до 0 на протяжении длины lcф. Вместе с тем, в отсутствие самофокусировки дифракционное расширение пучка на длине lсф примерно равно радиусу первой зоны Френеля Свойства лазерного излучения. - student2.ru , поэтому, если а= Свойства лазерного излучения. - student2.ru0, то самофокусировка компенсирует дифракционное расширение и пучок остаётся параллельным. В результате пороговая мощность пучка Рпорог= Свойства лазерного излучения. - student2.ru . Если Р>Рпорог то самофокусировка возможна. Если же Р<Рпорог то пучок будет расширятся, но не столь быстро, как в линейной среде.

57. Атомное ядро: состав, характеристики, модели, ядерные силы. Масса. Размеры ядер.

Ядром называется центральная часть атома, в которой сосредоточенна практически вся масса и его положительный заряд. Атомное ядро состоит из элементарных частиц – протонов и нейтронов (протонно-нейтронная модель была предложена сов. физиком Иваненко, а в последствии развита Гейзенбергом). Ядро атома характеризуется зарядом. Зарядом ядра является величина Свойства лазерного излучения. - student2.ru , где е – заряд протона, Z – порядковый номер химического элемента в периодической системе, равный числу протонов в ядре. Число нуклонов в ядре А=N+Z называется массовым числом, где N-число нейтронов в ядре.

Ядра с одинаковыми Z, но различными А называются изотопами. Ядра которые при одинаковом А имеют различные Z,называются изобарами. Ядро хим. элемента Х обозначается

Свойства лазерного излучения. - student2.ru , где Х - символ хим. элемента. Размер ядра характеризуется радиусом ядра. Эмпирическая формула для радиуса ядра Свойства лазерного излучения. - student2.ru , где Свойства лазерного излучения. - student2.ru м, может быть истолкована как пропорциональность объёма ядра числу нуклонов в нем. Плотность для ядерного вещества составляет по порядку величины Свойства лазерного излучения. - student2.ru Свойства лазерного излучения. - student2.ru и постоянна для всех ядер. Масса ядра меньше, чем сумма масс составляющих его нуклонов и этот дефект массы определяется по следующей формуле Свойства лазерного излучения. - student2.ru . Точно массу ядра можно определить с помощью масс-спектрометров. Нуклоны в атоме являются фермионами и имеют спин Свойства лазерного излучения. - student2.ru . Ядро атома имеет собственный момент импульса – спин ядра, равный Свойства лазерного излучения. - student2.ru ,где I – внутреннее (полное) спиновое квантовое число.

Число I принимает целочисленные или полуцелые значения Свойства лазерного излучения. - student2.ru и т.д. Ядерные частицы имеют собственные магнитные моменты, которыми определяется магнитный момент ядра Свойства лазерного излучения. - student2.ru в целом. Единицей магнитных моментов ядер служит ядерный магнетон Свойства лазерного излучения. - student2.ru : Свойства лазерного излучения. - student2.ru , где е – абсолютное значение заряда электрона , Свойства лазерного излучения. - student2.ru - масса протона. Между спином ядра Свойства лазерного излучения. - student2.ru , выраженным в Свойства лазерного излучения. - student2.ru , и его магнитным моментом имеется соотношение Свойства лазерного излучения. - student2.ru , где Свойства лазерного излучения. - student2.ru - ядерное гиромагнитное отношение. Распределение электрического заряда протонов по ядру в общем случае несиметрично. Мерой отклонения этого распределения от сферически-симметричного является квадрупольный электрический момент Q ядра. Если плотность заряда считается везде одинаковой, то Q определяется только формой ядра. Так для ядра, имеющего форму эллипсоида вращения, Свойства лазерного излучения. - student2.ru , где b – полуось эллипсоида вдоль направления спина; а – полуось в перпендикулярном направлении. Для ядра, вытянутого вдоль направления спина, b>a и Q>0. Для ядра сплющенного в этом направлении, b<a и Q<0. Для сферического распределения заряда в ядре b=a и Q=0. Это справедливо для ядер со спином, равным 0 или Свойства лазерного излучения. - student2.ru .

Между составляющими ядро нуклонами действуют особые, специфические для ядра силы, значительно превышающие кулоновские силы отталкивания между протонами. Они называются ядерными силами. Ядерные относятся к классу так называемых сильных взаимодействий. Основные свойства ядерных сил:

1. яд. силы являются силами притяжения;

2. яд. силы являются короткодействующими;

3. яд. силам свойственна зарядовая независимость: ядерные силы, действующие между двумя протонами, или протоном и нейтроном, одинаковы по величине, т.е. ядерные силы имеют не эл. природу;

4. яд. силам свойственно насыщение, т.е. каждый нуклон в ядре взаимодействует только с ограниченным числом ближайших к нему нуклонов;

5. яд. силы зависят от взаимной ориентации спинов взаимодействующих нуклонов;

6. яд. силы не являются центральными.

Модели ядра.

1.Капельная модель ядра является первой моделью. Она основана на аналогии между поведением нуклонов в ядре и поведением молекул в капле жидкости. Так, в обоих случаях силы, действующие между составными частицами – молекулами в жидкости и нуклонами в ядре, - являются короткодействующими и им свойственно насыщение. Для капли жидкости при данных внешних условиях характерна постоянная плотность её вещества. Ядра же характеризуются практически постоянной удельной энергией связи и постоянной плотностью, не зависимо от числа нуклонов в ядре. Объём капли и объём ядра пропорциональны числу частиц. Существенное отличие ядра от капли жидкости в этой модели закл. в том, что она трактует ядро как каплю эл. Заряженной несжимаемой жидкости, подчиняющуюся законам квантовой механики. Капельная модель ядра, объяснила механизм ядерных реакций деления ядер, но не смогла объяснить повышенную устойчивость ядер, содержащих магические числа протонов и нейтронов.

2.Оболочечная модель ядра предполагает распределение нуклонов в ядре по дискретным эн. уровням, заполняемым по принципу Паули, и связывает устойчивость ядер с заполнением этих уровней. Считается, что ядра с полностью заполненными оболочками являются наиболее устойчивыми. Оболочечная модель ядра позволила объяснить спины и магнитные моменты ядер, различную устойчивость атомных ядер, а также для описания лёгких и средних ядер, а также для ядер, находящимся в основном состоянии. По мере дальнейшего накопления экспериментальных данных о свойствах атомных ядер появлялись все новые факты, не укладывающиеся в рамки описанных моделей. Так возникли обобщённая модель ядра, оптическая модель ядра и т.д.

Ядерные реакции.

Ядерными реакциями называются превращения атомных ядер, вызванные взаимодействием их друг с другом или с элементарными частицами.

Как правило, в ядерных реакциях участвуют два ядра и две частицы. Одна пара ядро-частица является исходной, другая пара - конечной.

Наши рекомендации