Биоэлектрические потенциалы

§ Биоэлектрические потенциалы (биотоки) — электрические явления, наблюдаемые в живых клетках в покое и при физиологической деятельности.
Возникновение в живых клетках электрических потенциалов и обусловленных ими биотоков связано с физико-химическими свойствами клеточных мембран и компонентов цитоплазмы (аминокислот, белков, ионов). Между наружной поверхностью клеточной мембраны и внутренним содержимым клетки существует всегда разность потенциалов, которая создается в силу различной концентрации ионов К+, Na+, Cl- внутри и вне клетки и различной проницаемости для них клеточной мембраны. Эта разность потенциалов называется «током покоя», или мембранным потенциалом, и составляет в среднем 60—90 мВ.

§ 1. Мембранные потенциалы и их ионная природа

§ Мембранная теория биопотенциалов была выдвинута еще в 1902 году Бернштейном. Но только в 50-х годах эта теория была по-настоящему развита и экспериментально обоснована Ходжкиным, которому принадлежат основные идеи и теории о роли ионных градиентов в возникновении биопотенциалов и о механизме распределения ионов между клеткой и средой.

§ Сущность этой теории заключается в том, что потенциал покоя и потенциал действия являются по своей природе мембранными потенциалами, обусловленными полупроницаемыми свойствами клеточной мембраны и неравномерным распределением ионов между клеткой и средой, которое поддерживается механизмами активного переноса, локализованными в самой мембране.

§


39. Электролитами принято называть проводящие среды, в которых протекание электрического тока сопровождается переносом вещества. Носителями свободных зарядов в электролитах являются положительно и отрицательно заряженные ионы. К электролитам относятся многие соединения металлов в расплавленном состоянии, а также некоторые твердые вещества. Однако основными представителями электролитов, широко используемыми в технике, являются водные растворы неорганических кислот, солей и оснований.
Прохождение электрического тока через электролит сопровождается выделением веществ на электродах. Это явление получило название электролиза.
Прохождение электрического тока через электролит сопровождается выделением веществ на электродах. Это явление получило название электролиза.
Электрический ток в электролитах представляет собой перемещение ионов обоих знаков в противоположных направлениях. Положительные ионы движутся к отрицательному электроду (катоду), отрицательные ионы – к положительному электроду (аноду). Ионы обоих знаков появляются в водных растворах солей, кислот и щелочей в результате расщепления части нейтральных молекул. Это явление называется электролитической диссоциацией.
При подключении электродов к источнику тока ионы под действием электрического поля начинают упорядоченное движение: положительные ионы меди движутся к катоду, а отрицательно заряженные ионы хлора – к аноду

41. Дипольный электрический генератор (токовый диполь) В вакууме или в идеальном изоляторе электрический диполь может сохраняться сколь угодно долго. Однако в реальной ситуации (электропроводной среде) под действием электрического поля диполя возникает движение свободных зарядов, и диполь нейтра-лизуется. Сила тока во внешней цепи будет оставаться почти постоянной, она почти не зависит от свойств среды. Такая двухполюсная система, состоящая из истока и стока тока, называется дипольным электрическим генератором, или токовым диполем.

для оценки функционального состояния органа по его электрической активности используется принцип эквивалентного генератора. Он состоит в том, что изучаемый орган, состоящий из множества клеток, возбуждающихся в различные моменты времени, представляется моделью единого эквивалентно го генератора.

Метод исследования работы органов или тканей, основанный на регистрации во времени потенциалов электрического поля на поверхности тела, называется электрографией. Два электрода приложенные к разным точкам на поверхности тела, регистрируют меняющуюся во времени разность потенциалов. Временная зависимость изменения этой разности потенциалов называемся электрограммой.

В электрографии существуют две фундаментальные задачи: 1) прямая задача - расчет распределония электрического потенциала на заданной поверхности тела по заданным характеристикам эквивалентного генератора; 2)обратная задача - определение характеристик эквивалентного генератора (изучаемого органа) по измеренным потенциалам на поверхности тела.

Обратная задача – Это задача клинической диагностики: измеряя и регистрируя, например, ЭКГ (или ЭЭГ), определять функциональное состояние сердца (или мозга).

42. Эквивалентный электрический генератор, - это модельный генератор, более или менее близкий к истинному по конфигурации и удовлетворяющий критериям эквивалентности (они обычно сводятся к равенству полей в области измерения или же равенству собственных интегральных характеристик истинного и эквивалентного генераторов).

43. Первичный механизм воздействия токов и электромагнитных полей на организм – физический.Первичное действие постоянного тока на ткани организма. Гальванизация. Электрофорез лекарственных веществ Человеческий организм в значительной степени состоит из биологических жидкостей, содержащих большое количество ионов, которые участвуют в различных обменных процессах. Под влиянием электрического поля ионы движутся с разной скоростью и скапливаются около клеточных мембран, образуя встречное электрическое поле, называемое поляризационным. Таким образом, первичное действие постоянного тока связано с движением ионов в разных элементах тканей. Воздействие постоянного тока на организм зависит от силы тока, поэтому весьма существенное значение имеет электрическое сопротивление тканей, прежде всего кожи. Влага, пот значительно уменьшают сопротивление, что даже при небольшом напряжении может вызвать прохождение тока через организм. Постоянный ток используют в лечебной практике также и для введения лекарственных веществ через кожу или слизистые оболочки. Этот метод получил название электрофореза лекарственных веществ. Для этой цели поступают так же, как и при гальванизации, но прокладку активного электрода смачивают раствором соответствующего лекарственного вещества. Лекарство вводят с того полюса, зарядом которого оно обладает: анионы вводят с катода, катионы – с анода.

44. Ткани организма проводят не только постоянный, но и пе ременный ток. В организме нет таких систем, которые бы ли бы подобны катушкам индуктивности, поэтому индук тивность его близка к нулю. Биологические мембраны (и, следовательно, весь ор ганизм) обладают емкостными свойствами, в связи с эт им полное сопротивление тканей организма определя ется только омическим и емкостным сопротивлениями Наличие в биологических системах емкостных элемен тов подтверждается тем, что сила тока опережает п фазе приложенное напряжение. Частотная зависимост импеданса позволяет оценить жизнеспособность тка ней организма, это важно знать для пересадки (транс плантации) тканей и органов. Импеданс тканей и орга нов зависит также и от их физиологического состояния Так, при кровенаполнении сосудов импеданс изменяет ся в зависимости от состояния сердечно-сосудисто деятельности.

45. Эквивалентная электрическая схема тканей организма при воздействии постоянными и импульсными токами. Она может быть представлена в виде нескольких последовательно включенных резисторов, каждый из которых шунтирован конденсатором (рис.4).

В этой схеме Rк и Ск соответствуют эквивалентным сопротивлению и емкости слоя кожи и подкожной клетчатки. Для ориентировки укажем, что например, при небольшой площади электродов (несколько см2) и незначительной силе тока (постоянная составляющая доли миллиампера) для эквивалентной схемы можно принять следующий порядок величин: RK=1...2кОм Ск=0,03...0,05мкФ, Кьн=0,5...1кОм и Свн=0;01...0,02мкФ. Следствием емкостных свойств тканей является то, что форма импульсов тока, проходящего через них может отличаться от формы импульсов приложенного напряжения С ним нужно считаться при точных исследованиях.


46. Реография- метод, который позволяет измерять кровенаполнение конечностей, мозга, сердца и многих другихорганов.
Когда некоторый объем крови протекает через сосуды любого органа в течение систолы, объем этого органа увеличивается. Такие изменения объема изучались в прошлом с помощью, так называемой, плетизмографии, которая была основана на механических измерениях. Но возможности этого метода были ограничены. Он мог применяться только для изучения кровенаполнения верхних конечностей.
Позже было обнаружено, что при изменении количества крови в сосудах органов, изменяется их электрическое сопротивление. Это изменение определяется формулой Кедрова:

дельтаV/V=-K* дельтаR/R

Здесь V - объем органа и ΔV - изменение объема в течение систолы, R – активное сопротивление и - ΔR изменение активного сопротивления органа в течение систолы, k - коэффициент прямой пропорциональности. ΔR имеет отрицательное значение, поскольку электрическое сопротивление крови меньше, чем сопротивление мышц, соединительной ткани, кожа и т.п.

47. Теорема Пригожина — теорема термодинамики неравновесных процессов. Согласно этой теореме, стационарному состоянию системы (в условиях, препятствующих достижению равновесного состояния) соответствует минимальное производствоэнтропии. Если таких препятствий нет, то производство энтропии достигает своего абсолютного минимума — нуля.

В стационарном состоянии продукция энтропии внутри термодинамической системы при неизменных внешних параметрах является минимальной и константной. Если система не находится в стационарном состоянии, то она будет изменяться до тех пор, пока скорость продукции энтропии, или, иначе, диссипативная функция системы не примет наименьшего значения.

49. Событием называется всякий факт, который может произойти или не произойти в результате опыта. События называются НЕСОВМЕСТИМЫМИ, если появление одного из них исключает появление других. ПОЛНОЙ ГРУППОЙ СОБЫТИЙ называется совокупность всех возможных результатов опыта.ДОСТОВЕРНЫМ событием называется событие, которое наверняка произойдет в результате опыта. Событие называется НЕВОЗМОЖНЫМ, если оно никогда не произойдет в результате опыта. События называются РАВНОВОЗМОЖНЫМИ, если нет оснований считать, что одно из них появится в результате опыта с большей вероятностью.

50. Применяя эти косвенные методы, мы всегда в той или иной форме пользуемся основными теоремами теории вероятностей. Этих теорем две:
теорема сложения вероятностей;
теорема умножения вероятностей.
Теорема умножения вероятностей:
Введем понятие независимые и зависимые события.
Событие А называется независимым от события В, если вероятность события А не зависит от того, произошло событие В или нет.
16:50:47
Теорема умножения: Вероятность произведения двух событий равна произведению вероятности
Р(АВ) = P(A)×Р(В/А) (12)
Теорема умножения вероятностей:
Введем понятие независимые и зависимые события.
Событие А называется независимым от события В, если вероятность события А не зависит от того, произошло событие В или нет.
Событие А называют зависимым от события В, если вероятность события А меняется в зависимости от того, произошло событие В или нет.
Вероятность события А, вычисленная при условии, что имело место другое событие В, называется условной вероятностью события А и обозначается Р (А/В)

Наши рекомендации