Дифракция Фраунгофера на дифракционной решетке
Большое практическое значение имеет дифракция, наблюдаемая при прохождении света через одномерную дифракционную решетку-систему параллельных щелей равной ширины, лежащих в одной плоскости и разделенных равными по ширине непрозрачными промежутками. Если перейти от одной щели ко многим (к дифракционной решетке), то дифракционные картины, создаваемые каждой щелью в отдельности, бyдут одинаковыми.
Дифракционная картина на решетке определяется как результат взаимной интерференции волн, идущих от всех щелей, т. е. в дифракционной решетке осуществляется многолучевая интерференция когерентных дифрагированных пучков света, идущих от всех щелей.
Paccмотрим дифракционную решетку. На рис. 27.6 для наглядности показаны только две соседние щели МN и СD. Если ширина каждой щели равна а, а ширина непрозрачных участков между щелями b, то величина d=a+b называется постоянной (периодом) дифракционной решетки. Пусть плоская монохроматическая волна падает нормально к плоскости решетки. Так как щели находятся друг от друга на одинаковых расстояниях, то разности хода лучей, идущих от двух соседних щелей, будут для Рис.27.6.
данного направления φ одинаковы в пределах всей дифракционной решетки:
Δ=СF = (a+b)sinφ = d sinφ. (27.12)
Очевидно, что в тех направлениях, в которых ни одна из щелей не распространяет свет, он не будет распространяться и при двух щелях, т. е. прежние (главные) минимумыинтенсивности будут наблюдаться в направлениях, определяемых условием (27.9):
а sinφ = ± тλ (m= 1,2,3,…). (27.13)
Кроме того, вследствие взаимной интерференции световых лучей, посылаемых двумя щелями, в некоторых направлениях они будут гасить друг друга, т. е. возникнут дополнительные минимумы. Очевидно, что эти дополнительные минимумы будут наблюдаться в тех направлениях, которым соответствует разность хода лучей λ/2, 3λ/2, ... Таким образом, с учетом (27.12) условие дополнительных минимумов:
d sinφ = ± (2т+1)λ/2 (m= 0,1,2,3,…). (27.14)
Наоборот, действие одной щели будет усиливать действие другой, если
d sinφ = ± (2т)λ/2= ± тλ (m=0,1,2,3,…)(27.15)
т.е. выражение(27.15) задает условие главных максимумов.
Таким образом, полная дифракционная картина для двух щелей определяется из условий:
а sinφ = λ, 2λ, 3 λ … - главные минимумы;
d sinφ = λ/2, 3λ/2, 5λ/2, … - дополнительные минимумы;
d sinφ =0, λ, 2λ, 3λ, - главные максимумы,
т. е. между двумя главными максимумами располагается один дополнительный минимум.
Если дифракционная решетка состоит из N щелей, то условием главных минимумов является условие (27.13), условием главных максимумов — условие (27.15), а условием дополнительных минимумов
d sinφ = ± т' λ/N (m= 1,2,…, N-1, N+1,…, 2N-1, 2N+1,…) (27.16)
где m' может принимать все целочисленные значения, кроме 0, N, 2 N,..., т. е. кроме тех, при которых условие (27.16) переходит в (27.15). Следовательно, в cлучае N щелей между двумя главными максимумами располагается N-1 дополнительных минимумов, разделенных вторичными максимумами, создающими весьма слабый фон. Чем больше щелей N тем большее количество световой энергии пройдет через решетку.
При пропускании через решетку белого света все максимумы, кроме центрального (m =0), разложатся в спектр, фиолетовая областъ, которая будет обращена к центру дифракционной картины, красная — наружу. Это свойство дифракционной решетки используется для исследования спектрального состава света (определения длин волн и интенсивностей всех монохроматических компонентов), т. е. дифракционная решетка может быть использована как спектральный прибор.
Понятие о голографии
Голография — особый способ записи и последующего восстановления волнового поля, основанный на регистрации интерференционной картины. Она обязана своим возникновением законам волновой оптики — законам интерференции и дифракции.
Это принципиально новый способ фиксирования и воспроизведения пространственного изображения предметов стали возможными после появления источников света высокой степени когерентности — лазеров.
Рассмотрим элементарные основы принципа голографии, т. е. регистрации и восстановления информации о предмете рис. 27.7. Для регистрации и восстановления волны необходимо уметь регистрировать и восстанавливать амплитуду и фазу идущей от предмета волны. Учитывая, что I~А2, распределение интенсивности в интерференционной картине определяется как амплитудой интерферирующих волн, так и разностью их фаз. Поэтому для регистрации как фазовой, так и амплитудной Рис.27.7.
информации кроме волны, идущей от предмета (так называемой предметная волна), используют еще когерентную с ней волну, идущую от источника света (так называемую опорную волну).
Идея голографирования состоит в том, что фотографируется распределение интенсивности в интерференционной картине, возникающей при суперпозиции волнового поля объекта и когерентной ему опорной волны известной фазы. Последующая дифракция света на зарегистрированном распределении почернений в фотослое восстанавливает волновое поле объекта и допускает изучение этого поля при отсутствии объекта.
Практически эта идея может быть осуществлена с помощью принципиальной схемы, показанной на рис 27.7. Лазерный пучок делится на две части, причем одна его часть отражается зеркалом на фотопластинку (опорная волна), а вторая попадает на фотопластинку, отразившись от предмета (предметная волна). Опорная и предметная волны, являясь когерентными и накладываясь, друг на друга, образуют на фотопластинке интерференционную картину. После проявления фотопластинки и получается голограмма — зарегистрированная на фотопластинке интерференционная картина, образованная при сложении опорной и предметной волн.
Для восстановления изображения голограмма помещается в то же самое положение, где она находилась до регистрации. Ее освещают опорным пучком того же лазера (вторая часть лазерного пучка перекрывается диафрагмой). В результате дифракции света на интерференционной структуре голограммы восстанавливается копия предметной волны, образующая объемное (со всеми присущими предмету свойствами) мнимое изображение предмета, расположенное в том месте, где предмет находился при голографировании. Оно кажется настолько реальным, что его хочется потрогать. Кроме того, восстанавливается еще действительное изображение предмета, имеющее рельеф, обратный рельефу предмета, т. е. выпуклые места заменены вогнутыми, и на оборот.
Обычно пользуются мнимым голографическим изображением, которое по зрительному восприятию создает полную иллюзию существования реального предмета. Рассматривая из разных положений объемное изображение предмета, даваемое голограммой, можно увидеть более удаленные предметы, закрытые более близкими из них.
Голограмму можно расколоть на несколько кусков. Но даже малая часть голограммы восстанавливает полное изображение. Однако уменьшение размеров голограммы приводит к ухудшению четкости получаемого изображения. Это объясняется тем, что голограмма для опорного пучка служит дифракционной решеткой, а при уменьшении числа штрихов дифракционной решетки (при уменьшении размеров голограммы) ее разрешающая способность уменьшается.
Применение голограммы разнообразны, но наиболее важными, являются запись и хранение информации. В качестве будущих разработок могут служить ЭВМ с голографической памятью, голографическое изображение будущих строительных объектов, голографический электронный микроскоп, голографическое кино и телевидение и т.д. Значительный интерес представляет акустическая голография. Когерентные звуковые волны получить легко, а звук (или ультразвук) хорошо распространяется в жидкостях или твердых телах. Поэтому легко получить трехмерную акустическую голограмму непрозрачных предметов. Восстановив, затем изображение в видимом свете, получают возможность увидеть внутреннее строение тел, например, структуру металлического стержня, бетонной балки.