ГДЕ P-давление; VM-молярный объём; R-универсальная газовая постоянная;T-абсолютная температура
17) , где k является постоянной Больцмана (отношение универсальной газовой постоянной R к числу Авогадро NA), i — число степеней свободы молекул (i = 3 в большинстве задач про идеальные газы, где молекулы предполагаются сферами малого радиуса, физическим аналогом которых могут служить инертные газы), а T - абсолютная температура.
Основное уравнение МКТ связывает макроскопические параметры (давление, объём, температура) газовой системы с микроскопическими (масса молекул, средняя скорость их движения).
– при неизменном объеме и массе газа отношение давления газа к его абсолютной температуре является величиной постоянной. В современной физике закон Гей-Люссака рассматривается как одно из следствий уравнения состояния идеального газа (уравнения Менделеева–Клапейрона). Из закона Гей-Люссака следует, что при постоянном объеме давление газа прямо пропорционально его абсолютной температуре.
18) Распределение Максвелла – в равновесном состоянии параметры газа (давление, объем и температура) остаются неизменными, однако микросостояния – взаимное расположение молекул, их скорости – непрерывно изменяются. Из-за огромного количества молекул практически нельзя определить значения их скоростей в какой-либо момент, но возможно, считая скорость молекул непрерывной случайной величиной, указать распределение молекул по скоростям. Распределение молекул по скоростям подтверждено различными опытами. Распределение Максвелла можно рассматривать как распределение молекул не только по скоростям, но и по кинетическим энергиям (так как эти понятия взаимосвязаны).
19) Барометрическая формула — зависимость давления или плотности газа от высоты в поле тяжести.
Для идеального газа, имеющего постоянную температуру Т и находящегося в однородном поле тяжести (во всех точках его объёма ускорение свободного падения g одинаково), Б. ф. имеет следующий вид:
р = p0exp [-gm.(h - h0)/RT] (1),
где р — давление газа в слое, расположенном на высоте h, p0 — давление на нулевом уровне (h = h0), m — молекулярная масса газа, R — газовая постоянная, Т — абсолютная температура.
В присутствии гравитационного поля (или, в общем случае, любого потенциального поля) на молекулы газа действует сила тяжести. В результате, концентрация молекул газа оказывается зависящей от высоты в соответствии с законом распределения Больцмана:
n = n0exp( -mgh / kT ) , где n - концентрация молекул на высоте h, n0 - концентрация молекул на начальном уровне h = 0, m - масса частиц, g - ускорение свободного падения, k - постоянная Больцмана, T - температура.
Как мы уже знаем, термодинамическая система (ТС) может состоять из твердых, жидких или газообразных веществ. Полная энергия такой системы, очевидно, состоит из механической энергии системы как целого, внутренней энергии совокупности взаимодействующих между собой и хаотически движущихся частиц и энергии ядерного взаимодействия нуклонов атомов системы. С точки зрения термодинамики под внутренней энергией тела понимают сумму кинетической энергии хаотического движения составляющих ее частиц и потенциальной энергии их взаимодействия.
Практика показывает, что существует два способа обмена энергией между закрытой системой и внешними телами: