Определение теплоты испарения жидкости

Для равновесия между жидкостью и паром уравнение Клапейрона-Клаузиуса может быть получено следующим образом.

Согласно второму закону термодинамики если система находится в равновесии, то при данных условиях (Р, Т) работа не совершается

Ap = 0; Gж - Gп = 0; Gж = Gп(2)

то есть свободные энергии Гиббса чистой жидкости и её пара равны (это условия равновесия).

Изменим одно из условий, определяющих равновесие, например, температуру (то есть нагреем систему на Т), в результате этого установится новое давление, новое равновесие жидкость-пар:

G'ж = G'п(3)

или Gж=Gп(4)

Если изменение внешнего параметра произойдет на бесконечно малую величину - dT, то и изобарно-изотермические потенциалы изменятся на бесконечно малую величину:

dGж=dGп(5)

Изобарно-изотермический потенциал представляет собой свободную энергию системы и является функцией давления и температуры:

dG=VdPSdT(6)

поэтому с его помощью можно установить количественную зависимость между давлением насыщенного пара и температурой.

После подстановки (6) в (5) имеем в состоянии равновесия

VжdP - SжdT = VпdP - SпdT (7)

откуда Определение теплоты испарения жидкости - student2.ru (8)

где (Sп - Sж) и (Vп- Vж) - изменение соответственно энтропии и объема системы при переходе вещества из жидкого в парообразное состояние. Согласно второму закону термодинамики изменение энтропии системы при испарении равно приведенной теплоте испарения

Определение теплоты испарения жидкости - student2.ru (9)

Подставив выражение (9) в (8) получим

Определение теплоты испарения жидкости - student2.ru (10)

где ∆Hиспи ∆Vисп- соответственно изменение энтальпии и объема при испарении, аTкип- температура кипения.

Уравнение (10) называется уравнением Клапейрона-Клаузиуса. Согласно (10) наклон линий на фазовой диаграмме воды (рис. 1) определяется знаком производнойdP/dTили обратной ей величиныdT/dP- характеризующей изменение температуры с увеличением дав­ления.

Из фазовых переходов рассмотрим испарение и плавление. Теплота испарения - перехода жидкой фазы в газообразную положитель­на. Молярной теплотой испаренияназывается количество тепла, затраченное на испарение одного моля жидкого вещества. Объем газа при испарении всегда больше соответствующего объема жидкости, то есть в уравнении (10)Vп> Vж. ПоэтомуdP/dT, а значит, иdT/dPтакже всегда положительны (dT/dP> 0). Следовательно, температура испарения всегда повышается с ростом давления (криваяОКна рис. 1 или см. табл. 1 Приложения). С увеличением температуры давление насыщенного пара над жидкостью возрастает, принимая максимальное значение при критической температуре. Последняя является предельной температурой (например, для воды она равна 374,12оС) при которой возможно равновесие между жидкой и паровой фазой ве­щества. При более высоких температурах вещество может находиться только в газообразном состоянии, и понятие насыщенного пара теряет свой смысл.

Теплота плавления - перехода твердой фазы в жидкую также всегда положительна.

Определение теплоты испарения жидкости - student2.ru Рис. 1. Диаграмма состояния воды при невысоких давлениях

Области: 1 - твердая фаза (лед); II- жидкость; III - пар.

Кривые: АО - возгонки; ОК - испарения; ОВ - плавления.

О - тройная точка, отвечающая равновесию трех фаз.

Объем жидкой фазы в общем случае может быть больше или меньше объёма того же количества твердой фазы. Отсюда в соответствии с уравнением (10) вытекает, что величина dP/dTили обратная её величинаdT/dP, может быть положительной или отрицательной. Это значит, что температура плавления может повышаться или снижаться с увеличением давления. ВеличинаdT/dPположительна для большинства веществ. Она имеет отрицательное значение лишь для воды, висмута и немногих других веществ, для которых плотность жидкости при температуре плавления больше плотности твердой фазы (Vж-Vт) < 0. В связи с этим при увеличении давления температура плавления льда понижается (криваяОВ).

Необходимо отметить, что рассмотренные закономерности справедливы для невысоких давлений.

Уравнение Клапейрона-Клаузиуса (10) можно преобразовать приняв следующие приближения:

1) Поскольку ∆Vисп=(Vп-Vж) >> 0 (например, для воды мольный объём в парообразном состоянии при н.у.Vп≈ 22400 см2, а в жидком состоянииVж≈ 18 см3), то без большой погрешности можно пренебречь величинойVжи принять, что∆VиспVп.

2) При не слишком высоких давлениях и температурах (вдали от критических) можно применять уравнение состояния для идеальных газов и к реальным системам. Погрешность, получаемая при этом, оказывается незначительной.

Тогда

Определение теплоты испарения жидкости - student2.ru (11)

Подставив (11) в (10) получим:

Определение теплоты испарения жидкости - student2.ru (12)

которое после преобразования

Определение теплоты испарения жидкости - student2.ru (13)

принимает вид

Определение теплоты испарения жидкости - student2.ru (14)

Теплота испарения зависит от температуры: с повышением температуры теплота испарения понижается. При критической температуре теплота испарения равна нулю. Однако при температурах, далеких от критической, изменения∆Ниспс температурой не очень велики. В не слишком большом интервале температур∆Ниспможно считать постоянной.

Интегрирование уравнения Клапейрона-Клаузиуса (14) в пределах температур Т1 иТ2, которым отвечают давленияР1 иР2 при постоянном значении ∆Нисп, дает

Определение теплоты испарения жидкости - student2.ru (15)

или при переходе к десятичным логарифмам

Определение теплоты испарения жидкости - student2.ru (16)

(R- универсальная газовая постоянная равная 8,314 Дж/моль · К).

Уравнения (15), (16) позволяют рассчитать теплоту испарения. Для этого по экспериментальным данным строят зависимость lnP=f(1/T) илиlgP=f(1/T) и на полученной прямой выбирают две точки (рис. 2). Подставляют соответствующие этим точкам значения логарифма давления и обратной температуры в уравнение (17):

Определение теплоты испарения жидкости - student2.ru (17)

Значение∆Нисппо уравнению (17) зависит от взятого интервала температур и тем ближе к истинному, чем этот интервал меньше. Однако для такого вычисления требуется весьма точное измерение температуры кипения и давления пара.

Для вычисления∆Ниспв относительно широком интервале температур (50...100оС) следует выбирать точки, наиболее точно укладывающиеся на прямуюlgP=f(1/T).

Температура кипения жидкости, давление пара при данной тем­пературе и теплота испарения являются специфическими константами вещества, значения которых необходимы для многих теоретических и практических расчетов. На основе этих данных можно определять чистоту химических веществ, провести расчет разделения смесей путем перегонки, рассчитать энергетические затраты на испарение жидкости, необходимые для проведения реакции в газовой фазе.

Наши рекомендации