Три закона внешнего фотоэффекта
I. Закон Столетова:при фиксированной частоте падающего света число фотоэлектронов, вырываемых из катода в единицу времени, пропорционально интенсивности света (сила фототока насыщения пропорциональна энергетической освещенности Eе катода).
II. Максимальная начальная скорость (максимальная начальная кинетическая энергия) фотоэлектронов не зависит от интенсивности падающего света, а определяется только его частотой n, а именно линейно возрастает с увеличением частоты.
III. Для каждого вещества существует «красная граница» фотоэффекта, т. е. минимальная частота n0 света (зависящая от химической природы вещества и состояния его поверхности), при которой свет любой интенсивности фотоэффекта не вызывает.
Эффект Комптона
Эффектом Комптонаназывается упругое рассеяние коротковолнового электромагнитного излучения (рентгеновского и g-излучений) на свободных (или слабосвязанных) электронах вещества, сопровождающееся увеличением длины волны. Этот эффект не укладывается в рамки волновой теории, согласно которой длина волны при рассеянии изменяться не должна: под действием периодического поля световой волны электрон колеблется с частотой поля и поэтому излучает рассеянные волны той же частоты.
Объяснение эффекта Комптона дано на основе квантовых представлений о природе света. Если считать, как это делает квантовая теория, что излучение имеет корпускулярную природу, т. е. представляет собой поток фотонов, то эффект Комптона — результат упругого столкновения рентгеновских фотонов со свободными электронами вещества (для легких атомов электроны слабо связаны с ядрами атомов, поэтому их можно считать свободными). В процессе этого столкновения фотон передает электрону часть своих энергии и импульса в соответствии с законами их сохранения.
Рассмотрим упругое столкновение двух частиц (рис.291) — налетающего фотона, обладающего импульсом pg=hn/c и энергией eg=hn, с покоящимся свободным электроном (энергия покоя W0 = m0c2; m0—масса покоя электрона). Фотон, столкнувшись с электроном, передает ему часть своей энергии и импульса и изменяет направление движения (рассеивается). Уменьшение энергии фотона означает увеличение длины волны рассеянного излучения. Пусть импульс и энергия рассеянного фотона равны p'g=hn'/c и e'g=hn'. Электрон, ранее покоившийся, приобретает импульс pe=mv, энергию W=mc2 и приходит в движение — испытывает отдачу. При каждом таком столкновении выполняются законы сохранения энергии и импульса.
Согласно закону сохранения энергии,
W0+eg=W + e'g, (206.2) а согласно закону сохранения импульса, pg=pe+p'g. (206.3)
Подставив в выражении (206.2) значения величин и представив (206.3) в соответствии с рис. 291, получим
m0c2+hn=mc2+hn', (206.4)
Масса электрона отдачи связана с его скоростью v соотношением m=m0/Ö(1-(v/с)2) (см. (39.1)). Возведя уравнение (206.4) в квадрат, а затем вычитая из него (206.5) и учитывая (39.1), получим
т0с2 (n-n') = hnn'(1-cosq).
Поскольку n=c/l, n'=c/l' и Dl=l'-l, получим
Выражение (206.6) есть не что иное, как полученная экспериментально Комптоном формула (206.1). Подстановка в нее значений h, m0 и с дает комптоновскую длину волны электрона lC =h/(m0c)=2,426 пм.
Из приведенных рассуждений следует также, что эффект Комптона не может наблюдаться в видимой области спектра, поскольку энергия фотона видимого света сравнима с энергией связи электрона с атомом, при этом даже внешний электрон нельзя считать свободным.
Эффект Комптона наблюдается не только на электронах, но и на других заряженных частицах, например протонах, однако из-за большой массы протона его отдача «просматривается» лишь при рассеянии фотонов очень высоких энергий.
Как эффект Комптона, так и фотоэффект на основе квантовых представлений обусловлены взаимодействием фотонов с электронами. В первом случае фотон рассеивается, во втором — поглощается. Рассеяние происходит при взаимодействии фотона со свободным электроном, а фотоэффект — со связанными электронами. Можно показать, что при столкновении фотона со свободным электроном не может произойти поглощения фотона, так как это находится в противоречии с законами сохранения импульса и энергии. Поэтому при взаимодействии фотонов со свободными электронами может наблюдаться только их рассеяние, т. е. эффект Комптона.